BitMatrix Spatial Computing

Visual Representations

BitMatrix Spatial Computing: Visual Representations

BitMatrix Spatial Computing: Visual Representations

*Developed by Euan Craig (DigitalEuan.com) New Zealand, 2025*
*With assistance from GPT, Gemini, Grok, and Manus*

This document provides visual representations of key concepts in the BitMatrix Spatial Computing framework. These diagrams help illustrate the multidimensional nature of the architecture and its operational principles.

## 1. Core Architecture Visualizations

### 1.1 3D Bitfield Structure

```
    z
    |
    |     y
    |    /
    |   /
    |  /
    | /
    |/______ x

    3D Bitfield (8×8×8)
    
    Layer z=0:      Layer z=1:      Layer z=2:
    +--------+      +--------+      +--------+
    |11000011|      |10100101|      |10011001|
    |10000001|      |01000010|      |01100110|
    |10000001|      |00100100|      |00100100|
    |10000001|      |00011000|      |00000000|
    |10000001|      |00011000|      |00000000|
    |10000001|      |00100100|      |00100100|
    |10000001|      |01000010|      |01100110|
    |11000011|      |10100101|      |10011001|
    +--------+      +--------+      +--------+
```

### 1.2 4D Bitfield with Temporal Dimension

```
    Time (t)
       ↑
       |
    z  |
    |  |
    |  |
    |  +----> t
    | /|
    |/ |
    |  |
    |  |     y
    |  |    /
    |  |   /
    |  |  /
    |  | /
    |  |/______ x

    4D Bitfield (8×8×8×4)
    
    t=0:            t=1:            t=2:            t=3:
    +---+           +---+           +---+           +---+
    |   |           |   |           |   |           |   |
    | 3D|           | 3D|           | 3D|           | 3D|
    |Bit|           |Bit|           |Bit|           |Bit|
    |fie|           |fie|           |fie|           |fie|
    |ld |           |ld |           |ld |           |ld |
    |   |           |   |           |   |           |   |
    +---+           +---+           +---+           +---+
```

### 1.3 5D KTA Representation

```
    Kinetic (k)
       ↑
       |
    t  |
    |  |
    |  |
    |  +----> k
    | /|
    |/ |
    |  |
    z  |
    |  |
    |  |     y
    |  |    /
    |  |   /
    |  |  /
    |  | /
    |  |/______ x

    5D Bitfield (8×8×8×4×4)
    
    k=0:            k=1:            k=2:            k=3:
    +---+           +---+           +---+           +---+
    |   |           |   |           |   |           |   |
    | 4D|           | 4D|           | 4D|           | 4D|
    |Bit|           |Bit|           |Bit|           |Bit|
    |fie|           |fie|           |fie|           |fie|
    |ld |           |ld |           |ld |           |ld |
    |   |           |   |           |   |           |   |
    +---+           +---+           +---+           +---+
```

## 2. Spatial Operations Visualizations

### 2.1 Rotation Operation

```
    Original Block:         After 90° Rotation around Z-axis:
    
    +---+---+---+           +---+---+---+
    | 1 | 0 | 0 |           | 0 | 0 | 1 |
    +---+---+---+           +---+---+---+
    | 1 | 1 | 0 |           | 1 | 1 | 0 |
    +---+---+---+           +---+---+---+
    | 1 | 0 | 0 |           | 0 | 0 | 1 |
    +---+---+---+           +---+---+---+
    
    Rotation Matrix (Z-axis, 90°):
    
    [  cos(90°)  -sin(90°)   0  ]   [  0  -1   0  ]
    [  sin(90°)   cos(90°)   0  ] = [  1   0   0  ]
    [     0          0       1  ]   [  0   0   1  ]
```

### 2.2 Block Operations

```
    Target Bitfield:        Block to Insert:        Result:
    
    +---+---+---+---+      +---+---+               +---+---+---+---+
    | 0 | 0 | 0 | 0 |      | 1 | 1 |               | 0 | 0 | 0 | 0 |
    +---+---+---+---+      +---+---+               +---+---+---+---+
    | 0 | 0 | 0 | 0 |      | 1 | 1 |               | 0 | 1 | 1 | 0 |
    +---+---+---+---+                              +---+---+---+---+
    | 0 | 0 | 0 | 0 |                              | 0 | 1 | 1 | 0 |
    +---+---+---+---+                              +---+---+---+---+
    | 0 | 0 | 0 | 0 |                              | 0 | 0 | 0 | 0 |
    +---+---+---+---+                              +---+---+---+---+
    
    Insert Position: (1,1)
```

### 2.3 Perspective and Mirroring

```
    Original:               Perspective Projection:    Mirroring (X-axis):
    
      z                       y                          z
      |                       |                          |
      |     y                 |                          |     y
      |    /                  |                          |    /
      |   /                   |                          |   /
      |  /                    |                          |  /
      | /                     |                          | /
      |/______ x              |_______ x                 |/______ x
    
    +---+---+---+           +---+---+---+             +---+---+---+
    | 1 | 0 | 1 |           | 1 | 0 | 1 |             | 1 | 0 | 1 |
    +---+---+---+           +---+---+---+             +---+---+---+
    | 0 | 1 | 0 |           | 0 | 1 | 0 |             | 0 | 1 | 0 |
    +---+---+---+           +---+---+---+             +---+---+---+
    | 1 | 0 | 1 |           | 1 | 0 | 1 |             | 1 | 0 | 1 |
    +---+---+---+           +---+---+---+             +---+---+---+
                                                     
                                                       Mirror Matrix (X-axis):
                                                       [ -1  0  0 ]
                                                       [  0  1  0 ]
                                                       [  0  0  1 ]
```

## 3. Temporal Operations Visualizations

### 3.1 Wave Propagation

```
    Initial State (t=0):    Wave at t=1:           Wave at t=2:
    
    +---+---+---+---+      +---+---+---+---+      +---+---+---+---+
    | 0 | 0 | 0 | 0 |      | 0 | 0 | 0 | 0 |      | 0 | 1 | 0 | 0 |
    +---+---+---+---+      +---+---+---+---+      +---+---+---+---+
    | 0 | 1 | 0 | 0 |      | 1 | 0 | 1 | 0 |      | 0 | 0 | 0 | 1 |
    +---+---+---+---+      +---+---+---+---+      +---+---+---+---+
    | 0 | 0 | 0 | 0 |      | 0 | 1 | 0 | 0 |      | 1 | 0 | 1 | 0 |
    +---+---+---+---+      +---+---+---+---+      +---+---+---+---+
    | 0 | 0 | 0 | 0 |      | 0 | 0 | 0 | 0 |      | 0 | 0 | 0 | 0 |
    +---+---+---+---+      +---+---+---+---+      +---+---+---+---+
    
    Wave Equation: B(x,y,z,t+1) = 2B(x,y,z,t) - B(x,y,z,t-1) + c²∇²B(x,y,z,t)
```

### 3.2 Temporal Patterns

```
    Sine Wave Pattern:
    
    Amplitude
    1.0 |    *       *       *       *       *
        |   / \     / \     / \     / \     / \
    0.5 |--/---\---/---\---/---\---/---\---/---\--
        |  \   /   \   /   \   /   \   /   \   /
    0.0 |   *       *       *       *       *
        +--------------------------------------- Time
            0   1   2   3   4   5   6   7   8
    
    Square Wave Pattern:
    
    Amplitude
    1.0 |    *******       *******       *******
        |    |     |       |     |       |     |
    0.5 |----+     +-------+     +-------+     +--
        |    |     |       |     |       |     |
    0.0 |    *******       *******       *******
        +--------------------------------------- Time
            0   1   2   3   4   5   6   7   8
    
    Sawtooth Wave Pattern:
    
    Amplitude
    1.0 |        *           *           *
        |       /|          /|          /|
    0.5 |      / |         / |         / |
        |     /  |        /  |        /  |
    0.0 |    *   |       *   |       *   |
        +--------------------------------------- Time
            0   1   2   3   4   5   6   7   8
```

## 4. Neural Network Integration Visualizations

### 4.1 Neural Layer Representation

```
    BitMatrix Neural Network Architecture:
    
    Input Layer         Hidden Layer        Output Layer
    (3D Bitfield)                           (3D Bitfield)
    
    +---+---+---+                           +---+---+---+
    | 1 | 0 | 1 |                           | 0 | 1 | 0 |
    +---+---+---+      +---+---+---+        +---+---+---+
    | 0 | 1 | 0 |  →   | N | N | N |   →    | 1 | 0 | 1 |
    +---+---+---+      +---+---+---+        +---+---+---+
    | 1 | 0 | 1 |                           | 0 | 1 | 0 |
    +---+---+---+                           +---+---+---+
    
    Neural Layer Equation: y = σ(Wx + b)
```

### 4.2 Convolutional Operations

```
    Input Bitfield:        3D Convolutional Filter:    Output Feature Map:
    
    +---+---+---+---+      +---+---+                  +---+---+
    | 1 | 0 | 1 | 0 |      | 1 | 0 |                  | 2 | 1 |
    +---+---+---+---+      +---+---+                  +---+---+
    | 0 | 1 | 1 | 0 |      | 0 | 1 |                  | 2 | 3 |
    +---+---+---+---+                                 +---+---+
    | 0 | 0 | 1 | 1 |
    +---+---+---+---+
    | 1 | 0 | 0 | 0 |
    +---+---+---+---+
    
    Convolution Equation: C(x,y) = ∑∑ B(x+i,y+j) · F(i,j)
```

## 5. Quantum-Inspired Visualizations

### 5.1 Superposition Representation

```
    Classical Bit:         Quantum-Inspired Bit in Superposition:
    
    State: |0⟩ or |1⟩      State: α|0⟩ + β|1⟩  where |α|² + |β|² = 1
    
    Visualization:         Visualization (Bloch Sphere):
    
    |1⟩                         |0⟩
     ^                           ^
     |                           |
     |                           |
     |                        θ  |
     |                      /    |
     |                     /     |
     |                    •      |
     |                   /|      |
     |                  / |      |
     |                 /  |      |
     |                /   |      |
     |               /    |      |
     |              /     |      |
    |0⟩ ---------------------> |1⟩
    
    Measurement: Always 0 or 1   Measurement: |0⟩ with probability |α|²
                                              |1⟩ with probability |β|²
```

### 5.2 Quantum Gates

```
    X Gate (NOT):          H Gate (Hadamard):         CNOT Gate:
    
    |0⟩ → |1⟩              |0⟩ → (|0⟩+|1⟩)/√2         |00⟩ → |00⟩
    |1⟩ → |0⟩              |1⟩ → (|0⟩-|1⟩)/√2         |01⟩ → |01⟩
                                                      |10⟩ → |11⟩
    Matrix:                Matrix:                    |11⟩ → |10⟩
    
    [ 0  1 ]               [ 1/√2  1/√2 ]            [ 1  0  0  0 ]
    [ 1  0 ]               [ 1/√2 -1/√2 ]            [ 0  1  0  0 ]
                                                     [ 0  0  0  1 ]
                                                     [ 0  0  1  0 ]
```

### 5.3 Quantum Search

```
    Grover's Algorithm Visualization:
    
    Initial State:         After Oracle:           After Diffusion:
    (Equal Superposition)  (Flip Target State)     (Amplify Target)
    
    Amplitude              Amplitude               Amplitude
    0.5 |                  0.5 |                   0.8 |        *
        |                      |                       |        |
        |                      |                       |        |
        |                      |                       |        |
    0.0 |  * * * * * *     0.0 |  * * * * * *      0.0 |  * * * * *
        |  | | | | | |         |  | | | | | |          |  | | | | |
        |  | | | | | |         |  | | | | | |          |  | | | | |
        |  | | | | | |         |  | | | | | |          |  | | | | |
   -0.5 |                 -0.5 |        *         -0.5 |
        +------------          +------------           +------------
         0 1 2 3 4 5            0 1 2 3 4 5             0 1 2 3 4 5
         
    Target state: |3⟩
```

## 6. Data Compression Visualizations

### 6.1 Enhanced Compression Pipeline

```
    BitMatrix Enhanced Compression Pipeline:
    
    Original      KTA          Quantum       Pattern      RLE
    Bitfield  →  Transform  →  Fourier   →  Extraction →  Encoding  →
                                Transform
    
                                                            LZW
    Compressed  ←  Dictionary  ←  Metadata  ←  Encoding
    Data
    
    Compression Ratio Comparison:
    
    Method              Compression Ratio
    Standard RLE        2:1 - 5:1
    Standard LZW        10:1 - 20:1
    BitMatrix Enhanced  30:1 - 100:1
```

### 6.2 Run-Length Encoding

```
    Original Bitfield:     RLE Compressed:
    
    1 1 1 1 0 0 0 0 1 1   (1,4), (0,4), (1,2)
    
    Visualization:
    
    Value
    1   ****        **
        |   |       ||
    0   |   |****   ||
        |   ||   |  ||
        +---++---+--++--- Position
        0   45   9  11
```

## 7. Error Correction Visualizations

### 7.1 Hamming Code

```
    Hamming(7,4) Code:
    
    Data bits: d₁, d₂, d₃, d₄
    Parity bits: p₁, p₂, p₃
    
    Codeword layout:
    
    p₁ p₂ d₁ p₃ d₂ d₃ d₄
    
    Parity equations:
    p₁ = d₁ ⊕ d₂ ⊕ d₄
    p₂ = d₁ ⊕ d₃ ⊕ d₄
    p₃ = d₂ ⊕ d₃ ⊕ d₄
    
    Error detection:
    
    Error position = (p₁ error)×1 + (p₂ error)×2 + (p₃ error)×4
```

### 7.2 Error Correction Process

```
    Original Data:         Encoded Data:          Transmitted Data:
    
    1 0 1 1                1 1 1 0 0 1 1          1 1 1 0 0 0 1
                           p₁p₂d₁p₃d₂d₃d₄         p₁p₂d₁p₃d₂d₃d₄
                                                         ^ Error
    
    Error Detection:       Corrected Data:        Decoded Data:
    
    p₁ check: 1⊕1⊕1=1 ✓    1 1 1 0 0 1 1          1 0 1 1
    p₂ check: 1⊕0⊕1=0 ✗    p₁p₂d₁p₃d₂d₃d₄
    p₃ check: 0⊕0⊕1=1 ✓
    
    Error position = 0×1 + 1×2 + 0×4 = 2
    Bit at position 2 is flipped
```

## 8. 5D KTA Visualizations

### 8.1 Dimensional Transformation

```
    Original 3D Space:     After Dimension Shift (X→Z):
    
      z                       z
      |                       |
      |     y                 |     y
      |    /                  |    /
      |   /                   |   /
      |  /                    |  /
      | /                     | /
      |/______ x              |/______ x
    
    Coordinates (2,3,1)     Coordinates (1,3,2)
    
    Dimension Shift Operator: D_{x→z}[B](x,y,z) = B(z,y,x)
```

### 8.2 Kinetic Energy Distribution

```
    Kinetic Energy Distribution in 3D Space:
    
    z=0:                   z=1:                   z=2:
    
      y                      y                      y
      ^                      ^                      ^
      |                      |                      |
    3 |  0.1  0.2  0.3     3 |  0.2  0.3  0.4     3 |  0.3  0.4  0.5
      |                      |                      |
    2 |  0.2  0.3  0.4     2 |  0.3  0.4  0.5     2 |  0.4  0.5  0.6
      |                      |                      |
    1 |  0.3  0.4  0.5     1 |  0.4  0.5  0.6     1 |  0.5  0.6  0.7
      |                      |                      |
    0 +--+---+---+---       0 +--+---+---+---       0 +--+---+---+---
        0   1   2   3           0   1   2   3           0   1   2   3
            x                       x                       x
    
    Kinetic Energy Function: K(x,y,z) = (x+y+z)/10
```

### 8.3 Kinetic Wave Propagation

```
    Kinetic Wave Equation:
    
    ∂²B/∂t² = c² · ∂²B/∂k² + ∇²B
    
    Visualization of Wave Propagation through Kinetic Dimension:
    
    k=0, t=0:              k=1, t=0:              k=2, t=0:
    +---+---+---+          +---+---+---+          +---+---+---+
    | 0 | 0 | 0 |          | 0 | 0 | 0 |          | 0 | 0 | 0 |
    +---+---+---+          +---+---+---+          +---+---+---+
    | 0 | 1 | 0 |          | 0 | 0 | 0 |          | 0 | 0 | 0 |
    +---+---+---+          +---+---+---+          +---+---+---+
    | 0 | 0 | 0 |          | 0 | 0 | 0 |          | 0 | 0 | 0 |
    +---+---+---+          +---+---+---+          +---+---+---+
    
    k=0, t=1:              k=1, t=1:              k=2, t=1:
    +---+---+---+          +---+---+---+          +---+---+---+
    | 0 | 1 | 0 |          | 0 | 0 | 0 |          | 0 | 0 | 0 |
    +---+---+---+          +---+---+---+          +---+---+---+
    | 1 | 0 | 1 |          | 0 | 1 | 0 |          | 0 | 0 | 0 |
    +---+---+---+          +---+---+---+          +---+---+---+
    | 0 | 1 | 0 |          | 0 | 0 | 0 |          | 0 | 0 | 0 |
    +---+---+---+          +---+---+---+          +---+---+---+
```

## 9. Application Visualizations

### 9.1 Enhanced Data Compression

```
    Original Image:        After BitMatrix Compression:
    
    +---+---+---+---+      High-Magnitude Components:
    | ■ | ■ | □ | □ |      (0,0): 0.8∠0°
    +---+---+---+---+      (1,1): 0.5∠90°
    | ■ | ■ | □ | □ |      (2,0): 0.3∠180°
    +---+---+---+---+
    | □ | □ | ■ | ■ |      Compressed Size: 24 bytes
    +---+---+---+---+      Original Size: 64 bytes
    | □ | □ | ■ | ■ |      Compression Ratio: 2.67:1
    +---+---+---+---+
```

### 9.2 Neural Pattern Recognition

```
    Input Pattern:         Neural Network:         Recognition Result:
    
    +---+---+---+---+                             Pattern: "Letter A"
    | □ | ■ | ■ | □ |      Input    Hidden   Out  Confidence: 92%
    +---+---+---+---+      Layer    Layer    Layer
    | ■ | □ | □ | ■ |       ○        ○       ○    Features Detected:
    +---+---+---+---+       ○        ○       ○    - Diagonal lines
    | ■ | ■ | ■ | ■ |       ○        ○       ○    - Horizontal middle
    +---+---+---+---+       ○        ○       ○    - Vertical sides
    | ■ | □ | □ | ■ |
    +---+---+---+---+
```

### 9.3 Quantum-Inspired Computing

```
    Problem: Find pattern "101" in bitfield
    
    Bitfield:              Quantum Search:         Result:
    
    1 0 1 0 1 1 0 1 0 1    Initial state:         Pattern found at:
                           |ψ⟩ = (1/√10)∑|i⟩       - Position 0
                                                  - Position 4
    Quantum Circuit:       Oracle:                - Position 7
                           Marks positions 0,4,7
    |0⟩ --H--              
           |               Diffusion:
    |0⟩ --H-- Oracle -- Diffusion
           |               Amplifies marked states
    |0⟩ --H--              
```

These visual representations help illustrate the key concepts of the BitMatrix Spatial Computing framework, making it easier to understand the multidimensional nature of the architecture and its operational principles.