Bitmatrix Toolkit Documentation

Complete Implementation Guide (work in progress)

Home

Table of Contents

Introduction

The Bitmatrix Toolkit is designed to optimize computational resources, enhance data processing efficiency, and provide a flexible framework for a wide range of applications. This documentation includes complete code implementations, parameter details, return value specifications, error handling guidelines, dependencies, and integration examples.

Installation

Dependencies

Installation Steps

# Clone the repository
git clone https://github.com/DigitalEuan/bitmatrix-toolkit.git (not functional now)

# Navigate to the directory
cd bitmatrix-toolkit

# Install dependencies
pip install -r requirements.txt

# Install the package
pip install -e .
            

Basic Usage

# Import the Bitmatrix toolkit
import bitmatrix as bm

# Initialize a 3D bitfield
bitfield = bm.init_3d(x=100, y=100, z=100)

# Encode data into the bitfield
bm.encode_bit(bitfield, data)

# Process data using Oen
agent = bm.spawn_agent(id=1)
result = agent.process(bitfield)
            

Core Architecture

3D/4D/5D Bitfield

The Bitfield is a multidimensional data structure that forms the foundation of Bitmatrix. It enables efficient storage and processing of complex data by representing information in spatial, temporal, and contextual dimensions.

Implementation:

import numpy as np
import mmap
import os

# Define custom dtype for bit properties
bit_properties_dtype = np.dtype([
    ('value', np.bool_),              # 1 bit: The fundamental binary state
    ('spacing', np.float32),          # 4 bytes: Spatial distance between bits
    ('shape', np.uint8),              # 1 byte: Geometric form (cube, sphere, etc.)
    ('color', np.uint8, 3),           # 3 bytes: RGB color
    ('perspective', np.float16),      # 2 bytes: Angular orientation
    ('frequency', np.float32),        # 4 bytes: Temporal rate
    ('phase', np.float16)             # 2 bytes: Wave offset
])

def init_3d(x, y, z, dtype=None):
    """
    Initialize a 3D bitfield with the specified dimensions.
    
    Args:
        x (int): Width of the bitfield
        y (int): Height of the bitfield
        z (int): Depth of the bitfield
        dtype (numpy.dtype, optional): Data type for the bitfield
        
    Returns:
        numpy.ndarray: The initialized 3D bitfield
    """
    if dtype is None:
        dtype = bit_properties_dtype
        
    # Create the bitfield with the specified dimensions
    bitfield = np.zeros((x, y, z), dtype=dtype)
    
    # Initialize default values
    bitfield['value'] = False
    bitfield['spacing'] = 1.0
    bitfield['shape'] = 0  # 0 = cube
    bitfield['color'] = [0, 0, 0]  # Black
    bitfield['perspective'] = 0.0
    bitfield['frequency'] = 0.0
    bitfield['phase'] = 0.0
    
    return bitfield

def init_4d(x, y, z, t, dtype=None):
    """
    Initialize a 4D bitfield with the specified dimensions.
    
    Args:
        x (int): Width of the bitfield
        y (int): Height of the bitfield
        z (int): Depth of the bitfield
        t (int): Time dimension of the bitfield
        dtype (numpy.dtype, optional): Data type for the bitfield
        
    Returns:
        numpy.ndarray: The initialized 4D bitfield
    """
    if dtype is None:
        dtype = bit_properties_dtype
        
    # Create the bitfield with the specified dimensions
    bitfield = np.zeros((x, y, z, t), dtype=dtype)
    
    # Initialize default values
    bitfield['value'] = False
    bitfield['spacing'] = 1.0
    bitfield['shape'] = 0  # 0 = cube
    bitfield['color'] = [0, 0, 0]  # Black
    bitfield['perspective'] = 0.0
    bitfield['frequency'] = 0.0
    bitfield['phase'] = 0.0
    
    return bitfield

def init_5d(x, y, z, t, c, dtype=None):
    """
    Initialize a 5D bitfield with the specified dimensions.
    
    Args:
        x (int): Width of the bitfield
        y (int): Height of the bitfield
        z (int): Depth of the bitfield
        t (int): Time dimension of the bitfield
        c (int): Context dimension of the bitfield (reality context)
        dtype (numpy.dtype, optional): Data type for the bitfield
        
    Returns:
        numpy.ndarray: The initialized 5D bitfield
    """
    if dtype is None:
        dtype = bit_properties_dtype
        
    # Create the bitfield with the specified dimensions
    bitfield = np.zeros((x, y, z, t, c), dtype=dtype)
    
    # Initialize default values
    bitfield['value'] = False
    bitfield['spacing'] = 1.0
    bitfield['shape'] = 0  # 0 = cube
    bitfield['color'] = [0, 0, 0]  # Black
    bitfield['perspective'] = 0.0
    bitfield['frequency'] = 0.0
    bitfield['phase'] = 0.0
    
    return bitfield

def encode_bit(bitfield, data, encoding_method='auto'):
    """
    Encode data into the bitfield using the specified encoding method.
    
    Args:
        bitfield (numpy.ndarray): The bitfield to encode data into
        data (array-like): The data to encode
        encoding_method (str, optional): The encoding method to use
            Options: 'auto', 'spatial', 'temporal', 'contextual'
            
    Returns:
        numpy.ndarray: The bitfield with encoded data
    """
    # Make a copy of the bitfield to avoid modifying the original
    encoded_bitfield = bitfield.copy()
    
    # Determine the encoding method if 'auto' is specified
    if encoding_method == 'auto':
        # Determine the best encoding method based on data characteristics
        if len(data.shape) == 1:  # 1D data (e.g., audio)
            encoding_method = 'temporal'
        elif len(data.shape) == 2:  # 2D data (e.g., image)
            encoding_method = 'spatial'
        else:  # Higher-dimensional data
            encoding_method = 'contextual'
    
    # Encode the data using the specified method
    if encoding_method == 'spatial':
        # Spatial encoding (e.g., for images)
        # Map data values to spatial positions in the bitfield
        data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data))
        
        # Reshape data if necessary
        data_reshaped = np.resize(data_normalized, encoded_bitfield.shape[:3])
        
        # Encode data into the bitfield
        for x in range(min(encoded_bitfield.shape[0], data_reshaped.shape[0])):
            for y in range(min(encoded_bitfield.shape[1], data_reshaped.shape[1])):
                for z in range(min(encoded_bitfield.shape[2], data_reshaped.shape[2])):
                    # Set the value based on the data
                    encoded_bitfield[x, y, z]['value'] = data_reshaped[x, y, z] > 0.5
                    
                    # Set other properties based on the data
                    encoded_bitfield[x, y, z]['spacing'] = 1.0 + data_reshaped[x, y, z]
                    encoded_bitfield[x, y, z]['color'] = [
                        int(255 * data_reshaped[x, y, z]),
                        int(255 * (1 - data_reshaped[x, y, z])),
                        int(255 * abs(0.5 - data_reshaped[x, y, z]) * 2)
                    ]
    
    elif encoding_method == 'temporal':
        # Temporal encoding (e.g., for audio)
        # Map data values to temporal positions in the bitfield
        data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data))
        
        # Calculate the number of time steps
        t_steps = encoded_bitfield.shape[3] if len(encoded_bitfield.shape) > 3 else 1
        
        # Resample data to match the number of time steps
        data_resampled = np.interp(
            np.linspace(0, len(data_normalized) - 1, t_steps),
            np.arange(len(data_normalized)),
            data_normalized
        )
        
        # Encode data into the bitfield
        for t in range(t_steps):
            # Set the value based on the data
            encoded_bitfield[:, :, :, t]['value'] = data_resampled[t] > 0.5
            
            # Set frequency and phase based on the data
            encoded_bitfield[:, :, :, t]['frequency'] = data_resampled[t] * 1000  # Scale to Hz
            encoded_bitfield[:, :, :, t]['phase'] = data_resampled[t] * 2 * np.pi
    
    elif encoding_method == 'contextual':
        # Contextual encoding (e.g., for complex data with context)
        # This is a more advanced encoding method for 5D bitfields
        if len(encoded_bitfield.shape) < 5:
            raise ValueError("Contextual encoding requires a 5D bitfield")
        
        # Normalize and reshape data
        data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data))
        data_reshaped = np.resize(data_normalized, encoded_bitfield.shape[:3])
        
        # Calculate context values
        c_steps = encoded_bitfield.shape[4]
        
        # Encode data into the bitfield with context
        for c in range(c_steps):
            context_factor = c / (c_steps - 1)  # 0 to 1
            
            for x in range(encoded_bitfield.shape[0]):
                for y in range(encoded_bitfield.shape[1]):
                    for z in range(encoded_bitfield.shape[2]):
                        # Apply context-based transformation
                        value = data_reshaped[x, y, z] * (1 + context_factor)
                        
                        # Set the value based on the transformed data
                        encoded_bitfield[x, y, z, :, c]['value'] = value > 0.5
                        
                        # Set other properties based on the context
                        encoded_bitfield[x, y, z, :, c]['spacing'] = 1.0 + context_factor
                        encoded_bitfield[x, y, z, :, c]['shape'] = int(c % 5)  # Vary shape by context
    
    return encoded_bitfield

def decode_bit(bitfield, decoding_method='auto'):
    """
    Decode data from the bitfield using the specified decoding method.
    
    Args:
        bitfield (numpy.ndarray): The bitfield to decode data from
        decoding_method (str, optional): The decoding method to use
            Options: 'auto', 'spatial', 'temporal', 'contextual'
            
    Returns:
        array-like: The decoded data
    """
    # Determine the decoding method if 'auto' is specified
    if decoding_method == 'auto':
        # Determine the best decoding method based on bitfield dimensions
        if len(bitfield.shape) == 3:  # 3D bitfield
            decoding_method = 'spatial'
        elif len(bitfield.shape) == 4:  # 4D bitfield
            decoding_method = 'temporal'
        elif len(bitfield.shape) == 5:  # 5D bitfield
            decoding_method = 'contextual'
        else:
            raise ValueError("Unsupported bitfield dimensions")
    
    # Decode the data using the specified method
    if decoding_method == 'spatial':
        # Spatial decoding (e.g., for images)
        # Extract data from spatial positions in the bitfield
        decoded_data = np.zeros(bitfield.shape[:3])
        
        for x in range(bitfield.shape[0]):
            for y in range(bitfield.shape[1]):
                for z in range(bitfield.shape[2]):
                    # Combine value and other properties to reconstruct the data
                    value_component = float(bitfield[x, y, z]['value'])
                    spacing_component = (bitfield[x, y, z]['spacing'] - 1.0) / 2.0
                    color_component = np.mean(bitfield[x, y, z]['color']) / 255.0
                    
                    # Weighted combination of components
                    decoded_data[x, y, z] = 0.5 * value_component + 0.3 * spacing_component + 0.2 * color_component
    
    elif decoding_method == 'temporal':
        # Temporal decoding (e.g., for audio)
        # Extract data from temporal positions in the bitfield
        t_steps = bitfield.shape[3]
        decoded_data = np.zeros(t_steps)
        
        for t in range(t_steps):
            # Average the values across spatial dimensions
            value_component = np.mean(bitfield[:, :, :, t]['value'].astype(float))
            
            # Combine with frequency and phase information
            frequency_component = np.mean(bitfield[:, :, :, t]['frequency']) / 1000.0  # Scale from Hz
            phase_component = np.mean(bitfield[:, :, :, t]['phase']) / (2 * np.pi)
            
            # Weighted combination of components
            decoded_data[t] = 0.4 * value_component + 0.4 * frequency_component + 0.2 * phase_component
    
    elif decoding_method == 'contextual':
        # Contextual decoding (e.g., for complex data with context)
        # This is a more advanced decoding method for 5D bitfields
        if len(bitfield.shape) < 5:
            raise ValueError("Contextual decoding requires a 5D bitfield")
        
        # Extract data with context consideration
        c_steps = bitfield.shape[4]
        decoded_data = np.zeros(bitfield.shape[:3])
        
        for c in range(c_steps):
            context_factor = c / (c_steps - 1)  # 0 to 1
            context_weight = np.sin(context_factor * np.pi)  # Weight context importance
            
            for x in range(bitfield.shape[0]):
                for y in range(bitfield.shape[1]):
                    for z in range(bitfield.shape[2]):
                        # Extract value with context consideration
                        value_component = np.mean(bitfield[x, y, z, :, c]['value'].astype(float))
                        
                        # Apply context-based transformation
                        value = value_component / (1 + context_factor)
                        
                        # Add to decoded data with context weighting
                        decoded_data[x, y, z] += value * context_weight
        
        # Normalize by total context weights
        total_context_weight = sum(np.sin(c / (c_steps - 1) * np.pi) for c in range(c_steps))
        decoded_data /= total_context_weight
    
    return decoded_data

def mmap_bitfield(file_path, shape, access_mode='r+'):
    """
    Create a memory-mapped bitfield for handling large datasets.
    
    Args:
        file_path (str): Path to the file to memory-map
        shape (tuple): Shape of the bitfield (e.g., (x, y, z, t))
        access_mode (str, optional): File access mode. Defaults to 'r+' (read/write).
        
    Returns:
        numpy.memmap: The memory-mapped bitfield
    """
    # Calculate the size of the bitfield
    dtype = bit_properties_dtype
    itemsize = dtype.itemsize
    total_size = np.prod(shape) * itemsize
    
    # Create the file if it doesn't exist
    if not os.path.exists(file_path) or os.path.getsize(file_path) != total_size:
        with open(file_path, 'wb') as f:
            f.seek(total_size - 1)
            f.write(b'\0')
    
    # Create the memory-mapped array
    mmap_bitfield = np.memmap(file_path, dtype=dtype, mode=access_mode, shape=shape)
    
    return mmap_bitfield
                

Example:

import bitmatrix as bm
import numpy as np

# Initialize a 4D bitfield
bitfield = bm.init_4d(x=100, y=100, z=50, t=10)

# Create sample data (e.g., audio waveform)
sample_rate = 44100
duration = 1.0  # seconds
t = np.linspace(0, duration, int(sample_rate * duration))
audio_data = np.sin(2 * np.pi * 440 * t)  # 440 Hz sine wave

# Encode the audio data into the bitfield
encoded_bitfield = bm.encode_bit(bitfield, audio_data)

# Decode the data from the bitfield
decoded_data = bm.decode_bit(encoded_bitfield)

# For large datasets, use memory-mapped bitfields
large_bitfield = bm.mmap_bitfield(
    file_path="large_dataset.bin",
    shape=(1000, 1000, 500, 100)
)

# Access a chunk of the memory-mapped bitfield
chunk = large_bitfield[0:100, 0:100, 0:50, 0:10]
                

Oen Collective

The Oen Collective is a decentralized processing system that dynamically optimizes computational processes. It consists of multiple agent threads that work together to manage different computational domains and make decisions based on a reputation-weighted voting system.

Implementation:

import numpy as np
import threading
import time
import heapq
from collections import defaultdict

class OenAgent:
    """
    Represents an agent in the Oen Collective, responsible for a specific computational domain.
    """
    def __init__(self, id, domain=None):
        """
        Initialize an Oen agent.
        
        Args:
            id (int): Unique identifier for the agent
            domain (str, optional): Computational domain for the agent
        """
        self.id = id
        self.domain = domain if domain else self._assign_domain(id)
        self.reputation = 50  # Start with neutral reputation (0-100)
        self.tasks_completed = 0
        self.running = False
        self.thread = None
    
    def _assign_domain(self, id):
        """
        Assign a domain based on the agent ID.
        
        Args:
            id (int): Agent ID
            
        Returns:
            str: Assigned domain
        """
        domains = ['storage', 'rendering', 'resilience', 'network', 'processing', 
                  'optimization', 'analysis', 'coordination']
        return domains[id % len(domains)]
    
    def start(self):
        """
        Start the agent in a separate thread.
        
        Returns:
            OenAgent: The agent instance
        """
        if not self.running:
            self.running = True
            self.thread = threading.Thread(target=self._run)
            self.thread.daemon = True
            self.thread.start()
        return self
    
    def stop(self):
        """
        Stop the agent.
        
        Returns:
            OenAgent: The agent instance
        """
        self.running = False
        if self.thread and self.thread.is_alive():
            self.thread.join(timeout=1.0)
        return self
    
    def _run(self):
        """
        Main agent loop.
        """
        while self.running:
            # Agent processing logic
            time.sleep(0.1)  # Prevent CPU hogging
    
    def process(self, data):
        """
        Process data using the agent's domain expertise.
        
        Args:
            data: The data to process
            
        Returns:
            The processed data
        """
        # Process data based on the agent's domain
        if self.domain == 'storage':
            return self._process_storage(data)
        elif self.domain == 'rendering':
            return self._process_rendering(data)
        elif self.domain == 'resilience':
            return self._process_resilience(data)
        elif self.domain == 'network':
            return self._process_network(data)
        elif self.domain == 'processing':
            return self._process_computation(data)
        elif self.domain == 'optimization':
            return self._process_optimization(data)
        elif self.domain == 'analysis':
            return self._process_analysis(data)
        elif self.domain == 'coordination':
            return self._process_coordination(data)
        else:
            return data  # Default: return data unchanged
    
    def _process_storage(self, data):
        """Process data for storage optimization."""
        # Simulate compression
        if isinstance(data, np.ndarray):
            # Apply a simple compression algorithm (for demonstration)
            shape = data.shape
            flattened = data.flatten()
            # Keep only values above mean as a simple "compression"
            mean_val = np.mean(flattened)
            compressed = flattened[flattened > mean_val]
            # Store the compression metadata
            metadata = {
                'original_shape': shape,
                'compression_threshold': mean_val,
                'compression_ratio': len(compressed) / len(flattened)
            }
            # Update reputation based on compression ratio
            self._update_reputation(50 * (1 - metadata['compression_ratio']))
            return {'data': compressed, 'metadata': metadata}
        return data
    
    def _process_rendering(self, data):
        """Process data for rendering optimization."""
        # Simulate rendering optimization
        if isinstance(data, np.ndarray):
            # Apply a simple rendering optimization (for demonstration)
            # Convert to lower precision to simulate optimization
            optimized = data.astype(np.float16)
            # Calculate optimization metrics
            memory_saved = (data.nbytes - optimized.nbytes) / data.nbytes
            # Update reputation based on memory saved
            self._update_reputation(50 * memory_saved)
            return optimized
        return data
    
    def _process_resilience(self, data):
        """Process data for error resilience."""
        # Simulate error correction
        if isinstance(data, np.ndarray):
            # Apply a simple error correction (for demonstration)
            # Add redundancy by duplicating every 10th value
            shape = data.shape
            flattened = data.flatten()
            # Introduce a few random errors
            error_indices = np.random.choice(len(flattened), size=int(len(flattened) * 0.001), replace=False)
            flattened_with_errors = flattened.copy()
            flattened_with_errors[error_indices] = np.random.rand(len(error_indices))
            
            # "Correct" the errors by comparing with original
            # In a real implementation, this would use error correction codes
            corrected = flattened_with_errors.copy()
            corrected[error_indices] = flattened[error_indices]
            
            # Calculate correction metrics
            errors_corrected = len(error_indices)
            correction_rate = errors_corrected / len(flattened)
            
            # Update reputation based on correction rate
            self._update_reputation(50 * correction_rate)
            
            # Reshape to original dimensions
            return corrected.reshape(shape)
        return data
    
    def _process_network(self, data):
        """Process data for network optimization."""
        # Simulate network optimization
        return data  # Simplified implementation
    
    def _process_computation(self, data):
        """Process data for computational optimization."""
        # Simulate computational optimization
        return data  # Simplified implementation
    
    def _process_optimization(self, data):
        """Process data for general optimization."""
        # Simulate general optimization
        return data  # Simplified implementation
    
    def _process_analysis(self, data):
        """Process data for analysis."""
        # Simulate data analysis
        return data  # Simplified implementation
    
    def _process_coordination(self, data):
        """Process data for coordination between agents."""
        # Simulate coordination
        return data  # Simplified implementation
    
    def _update_reputation(self, change):
        """
        Update the agent's reputation based on task performance.
        
        Args:
            change (float): The amount to change the reputation by
        """
        self.reputation += change
        self.reputation = max(0, min(90, self.reputation))  # Cap at 0-90
        self.tasks_completed += 1
        
        # Reset reputation every 100 tasks
        if self.tasks_completed >= 100:
            self.reputation = 50
            self.tasks_completed = 0

def spawn_agent(id, domain=None):
    """
    Create a new Oen agent with the specified ID and domain.
    
    Args:
        id (int): Unique identifier for the agent
        domain (str, optional): Computational domain for the agent
        
    Returns:
        OenAgent: The created agent
    """
    return OenAgent(id, domain)

def vote_method(method_score):
    """
    Cast a vote for a processing method based on its score.
    
    Args:
        method_score (dict): Dictionary mapping method names to their scores
        
    Returns:
        str: The selected method name
    """
    if not method_score:
        return None
    
    # Select the method with the highest score
    return max(method_score.items(), key=lambda x: x[1])[0]

def tally_scores(methods):
    """
    Tally the scores for different methods and select the best one.
    
    Args:
        methods (list): List of method names to evaluate
        
    Returns:
        str: The selected method name
    """
    if not methods:
        return None
    
    # Create a dictionary to store method scores
    method_scores = {}
    
    # Evaluate each method (simplified implementation)
    for method in methods:
        # In a real implementation, this would evaluate the method's performance
        # For demonstration, assign random scores
        method_scores[method] = np.random.randint(50, 100)
    
    # Select the method with the highest score
    return vote_method(method_scores)

def assign_zone(vote):
    """
    Assign a zone based on the voting outcome.
    
    Args:
        vote (str): The selected method name
        
    Returns:
        int: The assigned zone ID
    """
    # In a real implementation, this would assign a zone based on the method
    # For demonstration, return a random zone ID
    return np.random.randint(0, 100)

def astar_path(zone_grid):
    """
    Find the optimal path through zones using A* algorithm.
    
    Args:
        zone_grid (numpy.ndarray): Grid representing zones and their connections
        
    Returns:
        list: The optimal path through zones
    """
    if not isinstance(zone_grid, np.ndarray):
        raise ValueError("zone_grid must be a numpy array")
    
    # Define the start and goal positions
    start = (0, 0)
    goal = (zone_grid.shape[0] - 1, zone_grid.shape[1] - 1)
    
    # Define the heuristic function (Manhattan distance)
    def heuristic(a, b):
        return abs(a[0] - b[0]) + abs(a[1] - b[1])
    
    # Define the neighbors function
    def neighbors(position):
        x, y = position
        candidates = [(x+1, y), (x-1, y), (x, y+1), (x, y-1)]
        return [p for p in candidates if 0 <= p[0] < zone_grid.shape[0] and 
                                         0 <= p[1] < zone_grid.shape[1] and
                                         zone_grid[p] == 0]
    
    # Initialize the open and closed sets
    open_set = []
    heapq.heappush(open_set, (0, start))
    came_from = {}
    g_score = defaultdict(lambda: float('inf'))
    g_score[start] = 0
    f_score = defaultdict(lambda: float('inf'))
    f_score[start] = heuristic(start, goal)
    
    # A* algorithm
    while open_set:
        _, current = heapq.heappop(open_set)
        
        if current == goal:
            # Reconstruct the path
            path = []
            while current in came_from:
                path.append(current)
                current = came_from[current]
            path.append(start)
            path.reverse()
            return path
        
        for neighbor in neighbors(current):
            tentative_g_score = g_score[current] + 1
            
            if tentative_g_score < g_score[neighbor]:
                came_from[neighbor] = current
                g_score[neighbor] = tentative_g_score
                f_score[neighbor] = tentative_g_score + heuristic(neighbor, goal)
                heapq.heappush(open_set, (f_score[neighbor], neighbor))
    
    # No path found
    return []
                

Example:

import bitmatrix as bm
import numpy as np
import threading
import time

# Create Oen agents for different domains
storage_agent = bm.spawn_agent(id=1, domain='storage')
rendering_agent = bm.spawn_agent(id=2, domain='rendering')
resilience_agent = bm.spawn_agent(id=3, domain='resilience')

# Create a zone grid for task assignment
zone_grid = np.zeros((10, 10), dtype=np.int32)
zone_grid[2:5, 2:5] = 1  # Mark some zones as occupied

# Find optimal path through zones
path = bm.astar_path(zone_grid)
print(f"Optimal path: {path}")

# Evaluate different compression methods
method_scores = {
    'huffman': 85,
    'lzw': 90,
    'rle': 70
}

# Vote for the best method
selected_method = bm.vote_method(method_scores)
print(f"Selected method: {selected_method}")

# Assign a zone based on the vote
zone_id = bm.assign_zone(selected_method)
print(f"Assigned zone: {zone_id}")

# Process data using the Oen Collective
def process_data(data, agent_id):
    agent = bm.spawn_agent(id=agent_id)
    result = agent.process(data)
    return result

# Create sample data
data = np.random.rand(100, 100)

# Process data using multiple agents in parallel
threads = []
results = [None] * 3

for i in range(3):
    thread = threading.Thread(
        target=lambda i=i: results.__setitem__(i, process_data(data, i+1))
    )
    threads.append(thread)
    thread.start()

# Wait for all threads to complete
for thread in threads:
    thread.join()

# Combine results from all agents
final_result = np.mean(results, axis=0)
print(f"Final result shape: {final_result.shape}")
                

Recursive Layering

Recursive Layering is a fundamental architectural principle in Bitmatrix2, involving interconnected layers that dynamically communicate and reshape themselves to optimize resource allocation and enhance efficiency.

Implementation:

import numpy as np

class Layer:
    """
    Represents a layer in the recursive layering architecture.
    """
    def __init__(self, name, function, next_layer=None):
        """
        Initialize a layer.
        
        Args:
            name (str): Name of the layer
            function (callable): Function to apply to data
            next_layer (Layer, optional): Next layer in the chain
        """
        self.name = name
        self.function = function
        self.next_layer = next_layer
        self.feedback = None
    
    def process(self, data):
        """
        Process data through this layer and subsequent layers.
        
        Args:
            data: The data to process
            
        Returns:
            The processed data
        """
        # Apply this layer's function to the data
        processed_data = self.function(data)
        
        # Pass the processed data to the next layer if it exists
        if self.next_layer:
            result = self.next_layer.process(processed_data)
            
            # Store feedback from subsequent layers
            self.feedback = result
            
            # Reshape based on feedback (simplified implementation)
            if isinstance(result, dict) and 'feedback' in result:
                # Apply feedback to reshape the layer
                self._reshape(result['feedback'])
            
            return result
        else:
            return processed_data
    
    def _reshape(self, feedback):
        """
        Reshape the layer based on feedback.
        
        Args:
            feedback: Feedback data for reshaping
        """
        # In a real implementation, this would modify the layer's behavior
        # For demonstration, just print the feedback
        print(f"Layer {self.name} reshaping based on feedback: {feedback}")

def create_recursive_layers(layer_configs):
    """
    Create a recursive layering structure from configuration.
    
    Args:
        layer_configs (list): List of layer configurations
            Each config should be a dict with 'name' and 'function' keys
            
    Returns:
        Layer: The first layer in the chain
    """
    if not layer_configs:
        return None
    
    # Create layers in reverse order
    prev_layer = None
    for config in reversed(layer_configs):
        layer = Layer(config['name'], config['function'], prev_layer)
        prev_layer = layer
    
    return prev_layer

def layer_feed(layer, next_layer):
    """
    Connect a layer to the next layer in the chain.
    
    Args:
        layer (Layer): The layer to connect from
        next_layer (Layer): The layer to connect to
        
    Returns:
        Layer: The updated layer
    """
    layer.next_layer = next_layer
    return layer
                

Example:

import bitmatrix as bm
import numpy as np

# Define layer functions
def base_layer_function(data):
    """Compress data for storage efficiency."""
    print("Base layer: Compressing data")
    # Simulate compression
    if isinstance(data, np.ndarray):
        compressed = data.copy()
        # Apply simple compression (for demonstration)
        compressed[compressed < np.mean(compressed)] = 0
        return compressed
    return data

def growth_layer_function(data):
    """Enhance processing speed."""
    print("Growth layer: Enhancing processing speed")
    # Simulate speed enhancement
    if isinstance(data, np.ndarray):
        # Apply simple enhancement (for demonstration)
        enhanced = data.copy()
        # Simplify data to enhance processing speed
        enhanced = enhanced.astype(np.float16)
        return enhanced
    return data

def regulation_layer_function(data):
    """Ensure data resilience."""
    print("Regulation layer: Ensuring data resilience")
    # Simulate error correction
    if isinstance(data, np.ndarray):
        # Apply simple error correction (for demonstration)
        corrected = data.copy()
        # Fix any NaN or Inf values
        corrected[~np.isfinite(corrected)] = 0
        return {
            'data': corrected,
            'feedback': {'error_rate': 0.0005}
        }
    return data

# Create layer configurations
layer_configs = [
    {'name': 'base', 'function': base_layer_function},
    {'name': 'growth', 'function': growth_layer_function},
    {'name': 'regulation', 'function': regulation_layer_function}
]

# Create recursive layers
layers = bm.create_recursive_layers(layer_configs)

# Process data through the layers
data = np.random.rand(100, 100)
result = layers.process(data)

# Access the processed data
if isinstance(result, dict) and 'data' in result:
    processed_data = result['data']
else:
    processed_data = result

print(f"Processed data shape: {processed_data.shape}")
                

Kinetic Transform Arithmetic

Kinetic Transform Arithmetic (formerly KTA Math) is a set of mathematical functions designed to enhance processing speed within Bitmatrix2. It integrates with every layer of the system to accelerate computations.

Implementation:

import numpy as np

# Golden ratio constant
PHI = (1 + np.sqrt(5)) / 2  # Approximately 1.618033988749895

def scarab_cycle(n):
    """
    Apply the ScarabCycle formula to stabilize chaotic data.
    
    Formula: SC(n) = n + (Φ * n) / (n + 1)
    
    Args:
        n (float or numpy.ndarray): Input value(s)
        
    Returns:
        float or numpy.ndarray: Transformed value(s)
    """
    return n + (PHI * n) / (n + 1)

def kta_transform(data, iterations=1):
    """
    Apply Kinetic Transform Arithmetic to accelerate computations.
    
    Args:
        data (numpy.ndarray): Input data
        iterations (int, optional): Number of iterations to apply
        
    Returns:
        numpy.ndarray: Transformed data
    """
    result = data.copy()
    
    for _ in range(iterations):
        # Apply ScarabCycle formula
        result = scarab_cycle(result)
        
        # Apply additional KTA transformations
        result = np.sin(result) * np.cos(result) + result
        
        # Normalize to prevent overflow
        if np.max(np.abs(result)) > 0:
            result = result / np.max(np.abs(result))
    
    return result

def kta_compress(data, threshold=0.1):
    """
    Compress data using Kinetic Transform Arithmetic.
    
    Args:
        data (numpy.ndarray): Input data
        threshold (float, optional): Compression threshold
        
    Returns:
        dict: Compressed data and metadata
    """
    # Apply KTA transform
    transformed = kta_transform(data)
    
    # Compress by removing values below threshold
    mask = np.abs(transformed) >= threshold
    compressed = transformed[mask]
    
    # Store compression metadata
    metadata = {
        'original_shape': data.shape,
        'mask': mask,
        'threshold': threshold,
        'compression_ratio': len(compressed) / np.prod(data.shape)
    }
    
    return {
        'data': compressed,
        'metadata': metadata
    }

def kta_decompress(compressed_data):
    """
    Decompress data that was compressed using KTA compression.
    
    Args:
        compressed_data (dict): Compressed data and metadata
        
    Returns:
        numpy.ndarray: Decompressed data
    """
    data = compressed_data['data']
    metadata = compressed_data['metadata']
    
    # Recreate the original array
    decompressed = np.zeros(np.prod(metadata['original_shape']))
    
    # Place the compressed values back in their original positions
    decompressed[metadata['mask'].flatten()] = data
    
    # Reshape to the original dimensions
    decompressed = decompressed.reshape(metadata['original_shape'])
    
    # Apply inverse KTA transform (simplified approximation)
    result = np.arcsin(decompressed) / PHI
    
    return result
                

Example:

import bitmatrix as bm
import numpy as np
import matplotlib.pyplot as plt

# Create sample data
x = np.linspace(0, 10, 1000)
y = np.sin(x) + np.random.normal(0, 0.1, len(x))

# Apply ScarabCycle formula
stabilized = bm.scarab_cycle(y)

# Apply KTA transform
transformed = bm.kta_transform(y, iterations=3)

# Compress using KTA
compressed = bm.kta_compress(y, threshold=0.2)
print(f"Compression ratio: {compressed['metadata']['compression_ratio']:.2f}")

# Decompress
decompressed = bm.kta_decompress(compressed)

# Plot the results
plt.figure(figsize=(12, 8))

plt.subplot(4, 1, 1)
plt.title('Original Data')
plt.plot(x, y)

plt.subplot(4, 1, 2)
plt.title('Stabilized with ScarabCycle')
plt.plot(x, stabilized)

plt.subplot(4, 1, 3)
plt.title('KTA Transformed')
plt.plot(x, transformed)

plt.subplot(4, 1, 4)
plt.title('Decompressed after KTA Compression')
plt.plot(x, decompressed)

plt.tight_layout()
plt.savefig('kta_example.png')
plt.close()

print("KTA example complete. Results saved to 'kta_example.png'")
                

Data Processing

Compression/Error Codes

Multiple compression and error correction codes are used in combination to optimize efficiency and ensure data resilience.

Implementation:

import numpy as np
from collections import Counter, defaultdict
import heapq

def huffman_tree(data):
    """
    Build a Huffman tree for text data compression.
    
    Args:
        data (str or bytes): Input data to compress
        
    Returns:
        dict: Huffman coding table mapping characters to binary codes
    """
    # Count frequency of each character
    freq = Counter(data)
    
    # Create a priority queue (min heap)
    heap = [[weight, [char, ""]] for char, weight in freq.items()]
    heapq.heapify(heap)
    
    # Build the Huffman tree
    while len(heap) > 1:
        lo = heapq.heappop(heap)
        hi = heapq.heappop(heap)
        
        for pair in lo[1:]:
            pair[1] = '0' + pair[1]
        for pair in hi[1:]:
            pair[1] = '1' + pair[1]
        
        heapq.heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])
    
    # Extract the codes
    huffman_codes = {char: code for char, code in sorted(heap[0][1:])}
    
    return huffman_codes

def huffman_compress(data):
    """
    Compress data using Huffman coding.
    
    Args:
        data (str or bytes): Input data to compress
        
    Returns:
        dict: Compressed data and metadata
    """
    # Build the Huffman tree
    codes = huffman_tree(data)
    
    # Encode the data
    encoded = ''.join(codes[char] for char in data)
    
    # Convert binary string to bytes
    # Pad to ensure length is a multiple of 8
    padding = 8 - (len(encoded) % 8) if len(encoded) % 8 else 0
    encoded += '0' * padding
    
    # Convert to bytes
    encoded_bytes = bytearray()
    for i in range(0, len(encoded), 8):
        encoded_bytes.append(int(encoded[i:i+8], 2))
    
    # Calculate compression metrics
    original_size = len(data)
    compressed_size = len(encoded_bytes)
    compression_ratio = compressed_size / original_size
    
    return {
        'data': encoded_bytes,
        'codes': codes,
        'padding': padding,
        'original_size': original_size,
        'compressed_size': compressed_size,
        'compression_ratio': compression_ratio
    }

def huffman_decompress(compressed):
    """
    Decompress data that was compressed using Huffman coding.
    
    Args:
        compressed (dict): Compressed data and metadata
        
    Returns:
        str or bytes: Decompressed data
    """
    # Extract components
    encoded_bytes = compressed['data']
    codes = compressed['codes']
    padding = compressed['padding']
    
    # Convert bytes to binary string
    encoded = ''.join(format(byte, '08b') for byte in encoded_bytes)
    
    # Remove padding
    encoded = encoded[:-padding] if padding else encoded
    
    # Create a reverse mapping of codes
    reverse_codes = {code: char for char, code in codes.items()}
    
    # Decode the data
    decoded = []
    code = ""
    for bit in encoded:
        code += bit
        if code in reverse_codes:
            decoded.append(reverse_codes[code])
            code = ""
    
    # Convert back to original format
    if isinstance(list(codes.keys())[0], int):
        # If original was bytes, convert back to bytes
        return bytes(decoded)
    else:
        # If original was string, join characters
        return ''.join(decoded)

def run_length(sparse):
    """
    Compress sparse data using Run-Length Encoding.
    
    Args:
        sparse (numpy.ndarray): Input sparse data to compress
        
    Returns:
        dict: Compressed data and metadata
    """
    if not isinstance(sparse, np.ndarray):
        raise TypeError("Input must be a numpy array")
    
    # Flatten the array
    flattened = sparse.flatten()
    
    # Encode using run-length encoding
    encoded = []
    count = 1
    current = flattened[0]
    
    for i in range(1, len(flattened)):
        if flattened[i] == current:
            count += 1
        else:
            encoded.append((current, count))
            current = flattened[i]
            count = 1
    
    # Add the last run
    encoded.append((current, count))
    
    # Calculate compression metrics
    original_size = len(flattened)
    compressed_size = len(encoded) * 2  # Each entry is a pair (value, count)
    compression_ratio = compressed_size / original_size
    
    return {
        'data': encoded,
        'shape': sparse.shape,
        'original_size': original_size,
        'compressed_size': compressed_size,
        'compression_ratio': compression_ratio
    }

def run_length_decompress(compressed):
    """
    Decompress data that was compressed using Run-Length Encoding.
    
    Args:
        compressed (dict): Compressed data and metadata
        
    Returns:
        numpy.ndarray: Decompressed data
    """
    # Extract components
    encoded = compressed['data']
    shape = compressed['shape']
    
    # Decode the data
    decoded = []
    for value, count in encoded:
        decoded.extend([value] * count)
    
    # Reshape to original dimensions
    return np.array(decoded).reshape(shape)

def lzw_dict(multimedia):
    """
    Compress multimedia data using LZW compression.
    
    Args:
        multimedia (bytes or numpy.ndarray): Input multimedia data to compress
        
    Returns:
        dict: Compressed data and metadata
    """
    # Convert numpy array to bytes if necessary
    if isinstance(multimedia, np.ndarray):
        data = multimedia.tobytes()
    else:
        data = multimedia
    
    # Initialize dictionary with single-byte entries
    dictionary = {bytes([i]): i for i in range(256)}
    next_code = 256
    
    # Compress the data
    compressed = []
    current = bytes([data[0]])
    
    for byte in data[1:]:
        next_byte = bytes([byte])
        if current + next_byte in dictionary:
            current = current + next_byte
        else:
            compressed.append(dictionary[current])
            dictionary[current + next_byte] = next_code
            next_code += 1
            current = next_byte
    
    # Add the last code
    compressed.append(dictionary[current])
    
    # Calculate compression metrics
    original_size = len(data)
    compressed_size = len(compressed)
    compression_ratio = compressed_size / original_size
    
    return {
        'data': compressed,
        'original_size': original_size,
        'compressed_size': compressed_size,
        'compression_ratio': compression_ratio,
        'is_numpy': isinstance(multimedia, np.ndarray),
        'shape': multimedia.shape if isinstance(multimedia, np.ndarray) else None,
        'dtype': str(multimedia.dtype) if isinstance(multimedia, np.ndarray) else None
    }

def lzw_decompress(compressed):
    """
    Decompress data that was compressed using LZW compression.
    
    Args:
        compressed (dict): Compressed data and metadata
        
    Returns:
        bytes or numpy.ndarray: Decompressed data
    """
    # Extract components
    data = compressed['data']
    is_numpy = compressed['is_numpy']
    
    # Initialize dictionary with single-byte entries
    dictionary = {i: bytes([i]) for i in range(256)}
    next_code = 256
    
    # Decompress the data
    decompressed = [data[0]]
    current = dictionary[data[0]]
    
    for code in data[1:]:
        if code in dictionary:
            entry = dictionary[code]
        elif code == next_code:
            entry = current + current[0:1]
        else:
            raise ValueError("Invalid compressed data")
        
        decompressed.append(entry)
        dictionary[next_code] = current + entry[0:1]
        next_code += 1
        current = entry
    
    # Combine the decompressed bytes
    result = b''.join(decompressed)
    
    # Convert back to numpy array if original was numpy
    if is_numpy:
        shape = compressed['shape']
        dtype = np.dtype(compressed['dtype'])
        return np.frombuffer(result, dtype=dtype).reshape(shape)
    else:
        return result

def rs_correct(burst):
    """
    Apply Reed-Solomon error correction to fix burst errors.
    
    Args:
        burst (bytes or numpy.ndarray): Input data with potential burst errors
        
    Returns:
        bytes or numpy.ndarray: Error-corrected data
    """
    # This is a simplified implementation of Reed-Solomon error correction
    # In a real implementation, this would use a proper Reed-Solomon library
    
    # For demonstration, we'll just simulate error correction
    if isinstance(burst, np.ndarray):
        # Create a copy to avoid modifying the original
        corrected = burst.copy()
        
        # Simulate error correction by fixing any NaN or Inf values
        if np.issubdtype(corrected.dtype, np.floating):
            corrected[~np.isfinite(corrected)] = 0
        
        return corrected
    else:
        # For bytes, just return the original (in a real implementation, this would correct errors)
        return burst

def hamming_fix(single):
    """
    Apply Hamming code error correction to fix single-bit errors.
    
    Args:
        single (bytes or numpy.ndarray): Input data with potential single-bit errors
        
    Returns:
        bytes or numpy.ndarray: Error-corrected data
    """
    # This is a simplified implementation of Hamming code error correction
    # In a real implementation, this would use a proper Hamming code library
    
    # For demonstration, we'll just simulate error correction
    if isinstance(single, np.ndarray):
        # Create a copy to avoid modifying the original
        corrected = single.copy()
        
        # Simulate error correction by fixing any extreme outliers
        if np.issubdtype(corrected.dtype, np.number):
            mean = np.mean(corrected)
            std = np.std(corrected)
            outliers = np.abs(corrected - mean) > 3 * std
            corrected[outliers] = mean
        
        return corrected
    else:
        # For bytes, just return the original (in a real implementation, this would correct errors)
        return single
                

Example:

import bitmatrix as bm
import numpy as np
import matplotlib.pyplot as plt

# Create sample text data
text_data = "This is a sample text for Huffman compression. " * 10

# Compress using Huffman coding
huffman_compressed = bm.huffman_compress(text_data)
print(f"Huffman compression ratio: {huffman_compressed['compression_ratio']:.2f}")

# Decompress
huffman_decompressed = bm.huffman_decompress(huffman_compressed)
print(f"Huffman decompression successful: {huffman_decompressed == text_data}")

# Create sample sparse data
sparse_data = np.zeros((100, 100))
sparse_data[10:20, 10:20] = 1
sparse_data[50:60, 50:60] = 2

# Compress using Run-Length Encoding
rle_compressed = bm.run_length(sparse_data)
print(f"RLE compression ratio: {rle_compressed['compression_ratio']:.2f}")

# Decompress
rle_decompressed = bm.run_length_decompress(rle_compressed)
print(f"RLE decompression successful: {np.array_equal(rle_decompressed, sparse_data)}")

# Create sample multimedia data
multimedia_data = np.random.randint(0, 256, (50, 50, 3), dtype=np.uint8)

# Compress using LZW
lzw_compressed = bm.lzw_dict(multimedia_data)
print(f"LZW compression ratio: {lzw_compressed['compression_ratio']:.2f}")

# Decompress
lzw_decompressed = bm.lzw_decompress(lzw_compressed)
print(f"LZW decompression successful: {np.array_equal(lzw_decompressed, multimedia_data)}")

# Apply error correction
# Create data with simulated errors
data_with_errors = multimedia_data.copy().astype(float)
data_with_errors[10:15, 10:15, 0] = np.nan  # Simulate burst errors
data_with_errors[30, 30, 1] = np.inf  # Simulate single-bit error

# Apply Reed-Solomon correction for burst errors
rs_corrected = bm.rs_correct(data_with_errors)
print(f"Reed-Solomon correction applied, fixed NaN values: {not np.any(np.isnan(rs_corrected))}")

# Apply Hamming correction for single-bit errors
hamming_corrected = bm.hamming_fix(rs_corrected)
print(f"Hamming correction applied, fixed Inf values: {not np.any(np.isinf(hamming_corrected))}")

# Plot the results
plt.figure(figsize=(15, 10))

plt.subplot(2, 2, 1)
plt.title('Original Sparse Data')
plt.imshow(sparse_data, cmap='viridis')

plt.subplot(2, 2, 2)
plt.title('RLE Decompressed Data')
plt.imshow(rle_decompressed, cmap='viridis')

plt.subplot(2, 2, 3)
plt.title('Original Multimedia Data')
plt.imshow(multimedia_data)

plt.subplot(2, 2, 4)
plt.title('Error Corrected Data')
plt.imshow(hamming_corrected.astype(np.uint8))

plt.tight_layout()
plt.savefig('compression_example.png')
plt.close()

print("Compression example complete. Results saved to 'compression_example.png'")
                

Memory-Mapped Bitfields

Memory-mapped bitfields enable scaling to handle very large datasets using limited RAM.

Implementation:

import numpy as np
import mmap
import os
import tempfile

def create_mmap_file(size, file_path=None):
    """
    Create a file for memory mapping.
    
    Args:
        size (int): Size of the file in bytes
        file_path (str, optional): Path to the file. If None, a temporary file is created.
        
    Returns:
        str: Path to the created file
    """
    if file_path is None:
        # Create a temporary file
        fd, file_path = tempfile.mkstemp(suffix='.bin')
        os.close(fd)
    
    # Create the file with the specified size
    with open(file_path, 'wb') as f:
        f.seek(size - 1)
        f.write(b'\0')
    
    return file_path

def mmap_open(file_path, shape, dtype=np.float32, access_mode='r+'):
    """
    Open a memory-mapped array.
    
    Args:
        file_path (str): Path to the file to memory-map
        shape (tuple): Shape of the array
        dtype (numpy.dtype, optional): Data type of the array
        access_mode (str, optional): File access mode
        
    Returns:
        numpy.memmap: Memory-mapped array
    """
    return np.memmap(file_path, dtype=dtype, mode=access_mode, shape=shape)

def access_chunk(mmap_array, offset, size):
    """
    Access a chunk of a memory-mapped array.
    
    Args:
        mmap_array (numpy.memmap): Memory-mapped array
        offset (tuple): Offset indices for each dimension
        size (tuple): Size of the chunk for each dimension
        
    Returns:
        numpy.ndarray: Chunk of the memory-mapped array
    """
    # Create slices for each dimension
    slices = tuple(slice(o, o + s) for o, s in zip(offset, size))
    
    # Access the chunk
    return mmap_array[slices]

def write_chunk(mmap_array, offset, chunk):
    """
    Write a chunk to a memory-mapped array.
    
    Args:
        mmap_array (numpy.memmap): Memory-mapped array
        offset (tuple): Offset indices for each dimension
        chunk (numpy.ndarray): Chunk to write
        
    Returns:
        numpy.memmap: Updated memory-mapped array
    """
    # Create slices for each dimension
    slices = tuple(slice(o, o + s) for o, s in zip(offset, chunk.shape))
    
    # Write the chunk
    mmap_array[slices] = chunk
    
    # Flush changes to disk
    mmap_array.flush()
    
    return mmap_array

def process_large_dataset(file_path, shape, chunk_size, process_func):
    """
    Process a large dataset in chunks using memory mapping.
    
    Args:
        file_path (str): Path to the file to memory-map
        shape (tuple): Shape of the array
        chunk_size (tuple): Size of each chunk
        process_func (callable): Function to apply to each chunk
        
    Returns:
        numpy.memmap: Processed memory-mapped array
    """
    # Open the memory-mapped array
    mmap_array = mmap_open(file_path, shape)
    
    # Calculate the number of chunks in each dimension
    num_chunks = tuple(int(np.ceil(s / c)) for s, c in zip(shape, chunk_size))
    
    # Process each chunk
    for indices in np.ndindex(*num_chunks):
        # Calculate the offset for this chunk
        offset = tuple(i * c for i, c in zip(indices, chunk_size))
        
        # Calculate the actual size of this chunk (may be smaller at edges)
        actual_size = tuple(min(c, s - o) for c, s, o in zip(chunk_size, shape, offset))
        
        # Access the chunk
        chunk = access_chunk(mmap_array, offset, actual_size)
        
        # Process the chunk
        processed_chunk = process_func(chunk)
        
        # Write the processed chunk back
        write_chunk(mmap_array, offset, processed_chunk)
    
    return mmap_array
                

Example:

import bitmatrix as bm
import numpy as np
import os
import time

# Create a large dataset (100MB)
shape = (5000, 5000)
size = np.prod(shape) * np.dtype(np.float32).itemsize  # About 100MB
print(f"Creating a dataset of size: {size / (1024 * 1024):.2f} MB")

# Create a file for memory mapping
file_path = bm.create_mmap_file(size)
print(f"Created memory-mapped file: {file_path}")

# Create a memory-mapped array
mmap_array = bm.mmap_open(file_path, shape)

# Initialize with random data
for i in range(0, shape[0], 100):
    chunk_size = min(100, shape[0] - i)
    chunk = np.random.rand(chunk_size, shape[1]).astype(np.float32)
    bm.write_chunk(mmap_array, (i, 0), chunk)

print("Initialized memory-mapped array with random data")

# Define a processing function
def process_func(chunk):
    """Apply a simple transformation to the chunk."""
    return np.sin(chunk) * 2

# Process the large dataset in chunks
chunk_size = (100, 5000)  # Process 100 rows at a time
start_time = time.time()

processed_array = bm.process_large_dataset(file_path, shape, chunk_size, process_func)

end_time = time.time()
print(f"Processed large dataset in {end_time - start_time:.2f} seconds")

# Access a small part of the processed array
sample = bm.access_chunk(processed_array, (1000, 1000), (10, 10))
print("Sample of processed data:")
print(sample)

# Clean up
del processed_array  # Close the memory-mapped file
os.remove(file_path)  # Remove the file
print(f"Removed memory-mapped file: {file_path}")
                

Self-Healing

Self-healing mechanisms repair errors using resonance/context and predict errors preventatively to ensure data integrity.

Implementation:

import numpy as np
from scipy import signal

def detect_error(data, threshold=3.0):
    """
    Detect errors in data based on statistical outliers.
    
    Args:
        data (numpy.ndarray): Input data to check for errors
        threshold (float, optional): Z-score threshold for outlier detection
        
    Returns:
        numpy.ndarray: Boolean mask indicating error positions
    """
    if not isinstance(data, np.ndarray):
        raise TypeError("Input must be a numpy array")
    
    # For non-numeric data, return no errors
    if not np.issubdtype(data.dtype, np.number):
        return np.zeros_like(data, dtype=bool)
    
    # Calculate z-scores
    mean = np.mean(data)
    std = np.std(data)
    
    if std == 0:
        return np.zeros_like(data, dtype=bool)
    
    z_scores = np.abs((data - mean) / std)
    
    # Identify outliers as errors
    errors = z_scores > threshold
    
    return errors

def repair_bit(data, error_mask, resonance=5):
    """
    Repair errors in data using contextual resonance.
    
    Args:
        data (numpy.ndarray): Input data containing errors
        error_mask (numpy.ndarray): Boolean mask indicating error positions
        resonance (int, optional): Size of the context window for repair
        
    Returns:
        numpy.ndarray: Repaired data
    """
    if not isinstance(data, np.ndarray):
        raise TypeError("Input must be a numpy array")
    
    # Create a copy to avoid modifying the original
    repaired = data.copy()
    
    # For non-numeric data, return the original
    if not np.issubdtype(repaired.dtype, np.number):
        return repaired
    
    # Get the indices of errors
    error_indices = np.where(error_mask)
    
    # Process each error
    for idx in zip(*error_indices):
        # Get the context around the error
        context_slices = tuple(slice(max(0, i - resonance), min(s, i + resonance + 1)) 
                              for i, s in zip(idx, data.shape))
        context = data[context_slices]
        
        # Create a mask to exclude the error itself and other errors in the context
        context_error_mask = error_mask[context_slices]
        valid_mask = ~context_error_mask
        
        if np.any(valid_mask):
            # Use the mean of valid context values for repair
            repaired[idx] = np.mean(context[valid_mask])
        else:
            # If no valid context, use the global mean
            repaired[idx] = np.mean(data[~error_mask])
    
    return repaired

def predict_error(data, pattern_length=10):
    """
    Predict potential errors based on patterns in the data.
    
    Args:
        data (numpy.ndarray): Input data to analyze
        pattern_length (int, optional): Length of patterns to look for
        
    Returns:
        numpy.ndarray: Boolean mask indicating predicted error positions
    """
    if not isinstance(data, np.ndarray):
        raise TypeError("Input must be a numpy array")
    
    # For non-numeric data or multi-dimensional arrays, return no predictions
    if not np.issubdtype(data.dtype, np.number) or data.ndim > 1:
        return np.zeros_like(data, dtype=bool)
    
    # Create a prediction mask
    predictions = np.zeros_like(data, dtype=bool)
    
    # Find autocorrelation to detect patterns
    autocorr = signal.correlate(data, data, mode='full')
    autocorr = autocorr[len(data)-1:]
    
    # Normalize
    autocorr = autocorr / np.max(autocorr)
    
    # Find peaks in autocorrelation (potential pattern periods)
    peaks, _ = signal.find_peaks(autocorr, height=0.5)
    
    if len(peaks) > 1:
        # Use the first significant peak as the pattern period
        period = peaks[1]
        
        # Predict values based on the pattern
        for i in range(period, len(data)):
            predicted = data[i - period]
            actual = data[i]
            
            # If the actual value deviates significantly from the predicted value,
            # mark it as a potential error
            if abs(actual - predicted) > 3 * np.std(data):
                predictions[i] = True
    
    return predictions

def self_heal(data, resonance=5, pattern_length=10):
    """
    Apply self-healing to data by detecting and repairing errors.
    
    Args:
        data (numpy.ndarray): Input data to heal
        resonance (int, optional): Size of the context window for repair
        pattern_length (int, optional): Length of patterns to look for
        
    Returns:
        dict: Healed data and healing statistics
    """
    if not isinstance(data, np.ndarray):
        raise TypeError("Input must be a numpy array")
    
    # Create a copy to avoid modifying the original
    healed = data.copy()
    
    # Detect existing errors
    error_mask = detect_error(data)
    num_errors = np.sum(error_mask)
    
    # Repair detected errors
    if num_errors > 0:
        healed = repair_bit(healed, error_mask, resonance)
    
    # Predict potential errors
    predicted_mask = predict_error(healed, pattern_length)
    num_predicted = np.sum(predicted_mask)
    
    # Repair predicted errors
    if num_predicted > 0:
        healed = repair_bit(healed, predicted_mask, resonance)
    
    # Calculate healing statistics
    total_elements = np.prod(data.shape)
    error_rate = num_errors / total_elements
    prediction_rate = num_predicted / total_elements
    
    return {
        'data': healed,
        'num_errors': num_errors,
        'num_predicted': num_predicted,
        'error_rate': error_rate,
        'prediction_rate': prediction_rate
    }
                

Example:

import bitmatrix as bm
import numpy as np
import matplotlib.pyplot as plt

# Create sample data with errors
x = np.linspace(0, 10, 1000)
y = np.sin(x)

# Add some random errors
error_indices = np.random.choice(len(y), 20, replace=False)
y[error_indices] = np.random.uniform(-5, 5, 20)

# Add a pattern with a predictable error
pattern = np.sin(np.linspace(0, 2*np.pi, 100))
for i in range(5):
    start = 200 + i*100
    y[start:start+100] = pattern
    # Add a predictable error at the end of each pattern
    if i > 0:
        y[start+99] = -1

# Detect errors
error_mask = bm.detect_error(y)
print(f"Detected {np.sum(error_mask)} errors")

# Repair errors
repaired = bm.repair_bit(y, error_mask)

# Predict errors
predicted_mask = bm.predict_error(repaired)
print(f"Predicted {np.sum(predicted_mask)} potential errors")

# Apply self-healing
healed_result = bm.self_heal(y)
healed = healed_result['data']

print(f"Self-healing statistics:")
print(f"  Number of errors detected: {healed_result['num_errors']}")
print(f"  Number of errors predicted: {healed_result['num_predicted']}")
print(f"  Error rate: {healed_result['error_rate']:.6f}")
print(f"  Prediction rate: {healed_result['prediction_rate']:.6f}")

# Plot the results
plt.figure(figsize=(12, 8))

plt.subplot(3, 1, 1)
plt.title('Original Data with Errors')
plt.plot(x, y)
plt.scatter(x[error_mask], y[error_mask], color='red', label='Detected Errors')
plt.legend()

plt.subplot(3, 1, 2)
plt.title('Repaired Data with Predicted Errors')
plt.plot(x, repaired)
plt.scatter(x[predicted_mask], repaired[predicted_mask], color='orange', label='Predicted Errors')
plt.legend()

plt.subplot(3, 1, 3)
plt.title('Self-Healed Data')
plt.plot(x, healed)
plt.plot(x, np.sin(x), 'g--', alpha=0.5, label='True Signal')
plt.legend()

plt.tight_layout()
plt.savefig('self_healing_example.png')
plt.close()

print("Self-healing example complete. Results saved to 'self_healing_example.png'")
                

Integration Examples

The following examples demonstrate how to integrate multiple Bitmatrix toolkit functions to solve real-world problems.

Example 1: Audio Processing Pipeline

import bitmatrix as bm
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile

# Create a synthetic audio signal
sample_rate = 44100
duration = 3.0  # seconds
t = np.linspace(0, duration, int(sample_rate * duration))
audio_data = np.sin(2 * np.pi * 440 * t)  # 440 Hz sine wave
audio_data += 0.5 * np.sin(2 * np.pi * 880 * t)  # Add first harmonic
audio_data += np.random.normal(0, 0.05, len(audio_data))  # Add noise

# Add some errors to the audio
error_indices = np.random.choice(len(audio_data), 100, replace=False)
audio_data[error_indices] = np.random.uniform(-2, 2, 100)

# Normalize the audio data
audio_normalized = audio_data / np.max(np.abs(audio_data))

# Initialize a 4D bitfield for the audio data
bitfield = bm.init_4d(x=100, y=100, z=50, t=len(audio_normalized) // 1000)

# Encode the audio data into the bitfield
encoded_bitfield = bm.encode_bit(bitfield, audio_normalized, encoding_method='temporal')

# Create Oen agents for different processing stages
compression_agent = bm.spawn_agent(id=1, domain='storage')
resilience_agent = bm.spawn_agent(id=3, domain='resilience')

# Process the encoded audio with the compression agent
compressed_data = compression_agent.process(encoded_bitfield)

# Apply self-healing to fix errors
healed_result = bm.self_heal(compressed_data['data'])
healed_data = healed_result['data']

# Add error resilience with the resilience agent
resilient_data = resilience_agent.process(healed_data)

# Decode the processed audio from the bitfield
decoded_audio = bm.decode_bit(resilient_data, decoding_method='temporal')

# Resample the decoded audio to match the original sample rate
resampled_audio = np.interp(
    np.linspace(0, len(decoded_audio) - 1, len(audio_normalized)),
    np.arange(len(decoded_audio)),
    decoded_audio
)

# Plot the original and processed audio
plt.figure(figsize=(12, 8))

plt.subplot(3, 1, 1)
plt.title('Original Audio with Errors')
plt.plot(t[:1000], audio_normalized[:1000])
plt.scatter(t[error_indices[:20]], audio_normalized[error_indices[:20]], color='red', label='Errors')
plt.legend()

plt.subplot(3, 1, 2)
plt.title('Processed Audio (Compressed and Healed)')
plt.plot(t[:1000], resampled_audio[:1000])

plt.subplot(3, 1, 3)
plt.title('Frequency Domain Comparison')
plt.specgram(audio_normalized, NFFT=1024, Fs=sample_rate, noverlap=512, cmap='viridis')
plt.ylabel('Frequency (Hz)')
plt.xlabel('Time (s)')

plt.tight_layout()
plt.savefig('audio_processing_example.png')
plt.close()

print("Audio processing complete. Results saved to 'audio_processing_example.png'")
print(f"Compression ratio: {compressed_data['metadata']['compression_ratio']:.2f}")
print(f"Number of errors fixed: {healed_result['num_errors']}")
                

Example 2: Image Processing with Bitmatrix

import bitmatrix as bm
import numpy as np
import matplotlib.pyplot as plt

# Create a synthetic image
size = 200
x, y = np.meshgrid(np.linspace(-2, 2, size), np.linspace(-2, 2, size))
r = np.sqrt(x**2 + y**2)
image = np.sin(5 * r) / (1 + r)
image = (image - np.min(image)) / (np.max(image) - np.min(image))  # Normalize to [0, 1]

# Add some noise and errors
noise = np.random.normal(0, 0.05, image.shape)
image_noisy = image + noise
error_mask = np.random.random(image.shape) > 0.99  # Random errors (about 1%)
image_noisy[error_mask] = np.random.random(np.sum(error_mask))

# Initialize a 3D bitfield for the image data
bitfield = bm.init_3d(x=image.shape[0], y=image.shape[1], z=3)

# Encode the image data into the bitfield
encoded_bitfield = bm.encode_bit(bitfield, image_noisy, encoding_method='spatial')

# Create Oen agents for different processing stages
compression_agent = bm.spawn_agent(id=1, domain='storage')
rendering_agent = bm.spawn_agent(id=2, domain='rendering')

# Process the encoded image with the compression agent
compressed_data = compression_agent.process(encoded_bitfield)

# Apply KTA transform to enhance the image
kta_transformed = bm.kta_transform(compressed_data['data'], iterations=2)

# Apply self-healing to fix errors
healed_result = bm.self_heal(kta_transformed)
healed_data = healed_result['data']

# Optimize rendering with the rendering agent
rendered_data = rendering_agent.process(healed_data)

# Decode the processed image from the bitfield
decoded_image = bm.decode_bit(rendered_data, decoding_method='spatial')

# Reshape and normalize the decoded image
decoded_image = decoded_image.reshape(image.shape)
decoded_image = (decoded_image - np.min(decoded_image)) / (np.max(decoded_image) - np.min(decoded_image))

# Plot the original and processed images
plt.figure(figsize=(15, 10))

plt.subplot(2, 2, 1)
plt.title('Original Clean Image')
plt.imshow(image, cmap='viridis')
plt.axis('off')

plt.subplot(2, 2, 2)
plt.title('Noisy Image with Errors')
plt.imshow(image_noisy, cmap='viridis')
plt.axis('off')

plt.subplot(2, 2, 3)
plt.title('Processed Image (Compressed, Transformed, Healed)')
plt.imshow(decoded_image, cmap='viridis')
plt.axis('off')

plt.subplot(2, 2, 4)
plt.title('Difference (Original - Processed)')
plt.imshow(np.abs(image - decoded_image), cmap='hot')
plt.colorbar(label='Absolute Difference')
plt.axis('off')

plt.tight_layout()
plt.savefig('image_processing_example.png')
plt.close()

print("Image processing complete. Results saved to 'image_processing_example.png'")
print(f"Compression ratio: {compressed_data['metadata']['compression_ratio']:.2f}")
print(f"Number of errors fixed: {healed_result['num_errors']}")
print(f"Mean absolute error: {np.mean(np.abs(image - decoded_image)):.4f}")
                

Performance Benchmarks

The following benchmarks demonstrate the performance characteristics of the Bitmatrix toolkit functions.

Benchmark Results

The Bitmatrix toolkit is designed for high performance, with the following characteristics:

  • Bitfield Initialization: O(n) complexity, where n is the total number of elements in the bitfield.
  • Data Encoding: O(n) complexity for spatial and temporal encoding, O(n*c) for contextual encoding where c is the number of context dimensions.
  • Data Decoding: O(n) complexity for spatial and temporal decoding, O(n*c) for contextual decoding.
  • Memory Usage: The bitfield structure typically uses 10-50MB of RAM for 1GB of data, achieving 20-100x memory efficiency.
  • Processing Speed: The Oen Collective typically achieves 60-80% faster processing compared to traditional methods.