The Bitmatrix Toolkit is designed to optimize computational resources, enhance data processing efficiency, and provide a flexible framework for a wide range of applications. This documentation includes complete code implementations, parameter details, return value specifications, error handling guidelines, dependencies, and integration examples.
# Clone the repository git clone https://github.com/DigitalEuan/bitmatrix-toolkit.git (not functional now) # Navigate to the directory cd bitmatrix-toolkit # Install dependencies pip install -r requirements.txt # Install the package pip install -e .
# Import the Bitmatrix toolkit import bitmatrix as bm # Initialize a 3D bitfield bitfield = bm.init_3d(x=100, y=100, z=100) # Encode data into the bitfield bm.encode_bit(bitfield, data) # Process data using Oen agent = bm.spawn_agent(id=1) result = agent.process(bitfield)
The Bitfield is a multidimensional data structure that forms the foundation of Bitmatrix. It enables efficient storage and processing of complex data by representing information in spatial, temporal, and contextual dimensions.
import numpy as np import mmap import os # Define custom dtype for bit properties bit_properties_dtype = np.dtype([ ('value', np.bool_), # 1 bit: The fundamental binary state ('spacing', np.float32), # 4 bytes: Spatial distance between bits ('shape', np.uint8), # 1 byte: Geometric form (cube, sphere, etc.) ('color', np.uint8, 3), # 3 bytes: RGB color ('perspective', np.float16), # 2 bytes: Angular orientation ('frequency', np.float32), # 4 bytes: Temporal rate ('phase', np.float16) # 2 bytes: Wave offset ]) def init_3d(x, y, z, dtype=None): """ Initialize a 3D bitfield with the specified dimensions. Args: x (int): Width of the bitfield y (int): Height of the bitfield z (int): Depth of the bitfield dtype (numpy.dtype, optional): Data type for the bitfield Returns: numpy.ndarray: The initialized 3D bitfield """ if dtype is None: dtype = bit_properties_dtype # Create the bitfield with the specified dimensions bitfield = np.zeros((x, y, z), dtype=dtype) # Initialize default values bitfield['value'] = False bitfield['spacing'] = 1.0 bitfield['shape'] = 0 # 0 = cube bitfield['color'] = [0, 0, 0] # Black bitfield['perspective'] = 0.0 bitfield['frequency'] = 0.0 bitfield['phase'] = 0.0 return bitfield def init_4d(x, y, z, t, dtype=None): """ Initialize a 4D bitfield with the specified dimensions. Args: x (int): Width of the bitfield y (int): Height of the bitfield z (int): Depth of the bitfield t (int): Time dimension of the bitfield dtype (numpy.dtype, optional): Data type for the bitfield Returns: numpy.ndarray: The initialized 4D bitfield """ if dtype is None: dtype = bit_properties_dtype # Create the bitfield with the specified dimensions bitfield = np.zeros((x, y, z, t), dtype=dtype) # Initialize default values bitfield['value'] = False bitfield['spacing'] = 1.0 bitfield['shape'] = 0 # 0 = cube bitfield['color'] = [0, 0, 0] # Black bitfield['perspective'] = 0.0 bitfield['frequency'] = 0.0 bitfield['phase'] = 0.0 return bitfield def init_5d(x, y, z, t, c, dtype=None): """ Initialize a 5D bitfield with the specified dimensions. Args: x (int): Width of the bitfield y (int): Height of the bitfield z (int): Depth of the bitfield t (int): Time dimension of the bitfield c (int): Context dimension of the bitfield (reality context) dtype (numpy.dtype, optional): Data type for the bitfield Returns: numpy.ndarray: The initialized 5D bitfield """ if dtype is None: dtype = bit_properties_dtype # Create the bitfield with the specified dimensions bitfield = np.zeros((x, y, z, t, c), dtype=dtype) # Initialize default values bitfield['value'] = False bitfield['spacing'] = 1.0 bitfield['shape'] = 0 # 0 = cube bitfield['color'] = [0, 0, 0] # Black bitfield['perspective'] = 0.0 bitfield['frequency'] = 0.0 bitfield['phase'] = 0.0 return bitfield def encode_bit(bitfield, data, encoding_method='auto'): """ Encode data into the bitfield using the specified encoding method. Args: bitfield (numpy.ndarray): The bitfield to encode data into data (array-like): The data to encode encoding_method (str, optional): The encoding method to use Options: 'auto', 'spatial', 'temporal', 'contextual' Returns: numpy.ndarray: The bitfield with encoded data """ # Make a copy of the bitfield to avoid modifying the original encoded_bitfield = bitfield.copy() # Determine the encoding method if 'auto' is specified if encoding_method == 'auto': # Determine the best encoding method based on data characteristics if len(data.shape) == 1: # 1D data (e.g., audio) encoding_method = 'temporal' elif len(data.shape) == 2: # 2D data (e.g., image) encoding_method = 'spatial' else: # Higher-dimensional data encoding_method = 'contextual' # Encode the data using the specified method if encoding_method == 'spatial': # Spatial encoding (e.g., for images) # Map data values to spatial positions in the bitfield data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data)) # Reshape data if necessary data_reshaped = np.resize(data_normalized, encoded_bitfield.shape[:3]) # Encode data into the bitfield for x in range(min(encoded_bitfield.shape[0], data_reshaped.shape[0])): for y in range(min(encoded_bitfield.shape[1], data_reshaped.shape[1])): for z in range(min(encoded_bitfield.shape[2], data_reshaped.shape[2])): # Set the value based on the data encoded_bitfield[x, y, z]['value'] = data_reshaped[x, y, z] > 0.5 # Set other properties based on the data encoded_bitfield[x, y, z]['spacing'] = 1.0 + data_reshaped[x, y, z] encoded_bitfield[x, y, z]['color'] = [ int(255 * data_reshaped[x, y, z]), int(255 * (1 - data_reshaped[x, y, z])), int(255 * abs(0.5 - data_reshaped[x, y, z]) * 2) ] elif encoding_method == 'temporal': # Temporal encoding (e.g., for audio) # Map data values to temporal positions in the bitfield data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data)) # Calculate the number of time steps t_steps = encoded_bitfield.shape[3] if len(encoded_bitfield.shape) > 3 else 1 # Resample data to match the number of time steps data_resampled = np.interp( np.linspace(0, len(data_normalized) - 1, t_steps), np.arange(len(data_normalized)), data_normalized ) # Encode data into the bitfield for t in range(t_steps): # Set the value based on the data encoded_bitfield[:, :, :, t]['value'] = data_resampled[t] > 0.5 # Set frequency and phase based on the data encoded_bitfield[:, :, :, t]['frequency'] = data_resampled[t] * 1000 # Scale to Hz encoded_bitfield[:, :, :, t]['phase'] = data_resampled[t] * 2 * np.pi elif encoding_method == 'contextual': # Contextual encoding (e.g., for complex data with context) # This is a more advanced encoding method for 5D bitfields if len(encoded_bitfield.shape) < 5: raise ValueError("Contextual encoding requires a 5D bitfield") # Normalize and reshape data data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data)) data_reshaped = np.resize(data_normalized, encoded_bitfield.shape[:3]) # Calculate context values c_steps = encoded_bitfield.shape[4] # Encode data into the bitfield with context for c in range(c_steps): context_factor = c / (c_steps - 1) # 0 to 1 for x in range(encoded_bitfield.shape[0]): for y in range(encoded_bitfield.shape[1]): for z in range(encoded_bitfield.shape[2]): # Apply context-based transformation value = data_reshaped[x, y, z] * (1 + context_factor) # Set the value based on the transformed data encoded_bitfield[x, y, z, :, c]['value'] = value > 0.5 # Set other properties based on the context encoded_bitfield[x, y, z, :, c]['spacing'] = 1.0 + context_factor encoded_bitfield[x, y, z, :, c]['shape'] = int(c % 5) # Vary shape by context return encoded_bitfield def decode_bit(bitfield, decoding_method='auto'): """ Decode data from the bitfield using the specified decoding method. Args: bitfield (numpy.ndarray): The bitfield to decode data from decoding_method (str, optional): The decoding method to use Options: 'auto', 'spatial', 'temporal', 'contextual' Returns: array-like: The decoded data """ # Determine the decoding method if 'auto' is specified if decoding_method == 'auto': # Determine the best decoding method based on bitfield dimensions if len(bitfield.shape) == 3: # 3D bitfield decoding_method = 'spatial' elif len(bitfield.shape) == 4: # 4D bitfield decoding_method = 'temporal' elif len(bitfield.shape) == 5: # 5D bitfield decoding_method = 'contextual' else: raise ValueError("Unsupported bitfield dimensions") # Decode the data using the specified method if decoding_method == 'spatial': # Spatial decoding (e.g., for images) # Extract data from spatial positions in the bitfield decoded_data = np.zeros(bitfield.shape[:3]) for x in range(bitfield.shape[0]): for y in range(bitfield.shape[1]): for z in range(bitfield.shape[2]): # Combine value and other properties to reconstruct the data value_component = float(bitfield[x, y, z]['value']) spacing_component = (bitfield[x, y, z]['spacing'] - 1.0) / 2.0 color_component = np.mean(bitfield[x, y, z]['color']) / 255.0 # Weighted combination of components decoded_data[x, y, z] = 0.5 * value_component + 0.3 * spacing_component + 0.2 * color_component elif decoding_method == 'temporal': # Temporal decoding (e.g., for audio) # Extract data from temporal positions in the bitfield t_steps = bitfield.shape[3] decoded_data = np.zeros(t_steps) for t in range(t_steps): # Average the values across spatial dimensions value_component = np.mean(bitfield[:, :, :, t]['value'].astype(float)) # Combine with frequency and phase information frequency_component = np.mean(bitfield[:, :, :, t]['frequency']) / 1000.0 # Scale from Hz phase_component = np.mean(bitfield[:, :, :, t]['phase']) / (2 * np.pi) # Weighted combination of components decoded_data[t] = 0.4 * value_component + 0.4 * frequency_component + 0.2 * phase_component elif decoding_method == 'contextual': # Contextual decoding (e.g., for complex data with context) # This is a more advanced decoding method for 5D bitfields if len(bitfield.shape) < 5: raise ValueError("Contextual decoding requires a 5D bitfield") # Extract data with context consideration c_steps = bitfield.shape[4] decoded_data = np.zeros(bitfield.shape[:3]) for c in range(c_steps): context_factor = c / (c_steps - 1) # 0 to 1 context_weight = np.sin(context_factor * np.pi) # Weight context importance for x in range(bitfield.shape[0]): for y in range(bitfield.shape[1]): for z in range(bitfield.shape[2]): # Extract value with context consideration value_component = np.mean(bitfield[x, y, z, :, c]['value'].astype(float)) # Apply context-based transformation value = value_component / (1 + context_factor) # Add to decoded data with context weighting decoded_data[x, y, z] += value * context_weight # Normalize by total context weights total_context_weight = sum(np.sin(c / (c_steps - 1) * np.pi) for c in range(c_steps)) decoded_data /= total_context_weight return decoded_data def mmap_bitfield(file_path, shape, access_mode='r+'): """ Create a memory-mapped bitfield for handling large datasets. Args: file_path (str): Path to the file to memory-map shape (tuple): Shape of the bitfield (e.g., (x, y, z, t)) access_mode (str, optional): File access mode. Defaults to 'r+' (read/write). Returns: numpy.memmap: The memory-mapped bitfield """ # Calculate the size of the bitfield dtype = bit_properties_dtype itemsize = dtype.itemsize total_size = np.prod(shape) * itemsize # Create the file if it doesn't exist if not os.path.exists(file_path) or os.path.getsize(file_path) != total_size: with open(file_path, 'wb') as f: f.seek(total_size - 1) f.write(b'\0') # Create the memory-mapped array mmap_bitfield = np.memmap(file_path, dtype=dtype, mode=access_mode, shape=shape) return mmap_bitfield
import bitmatrix as bm import numpy as np # Initialize a 4D bitfield bitfield = bm.init_4d(x=100, y=100, z=50, t=10) # Create sample data (e.g., audio waveform) sample_rate = 44100 duration = 1.0 # seconds t = np.linspace(0, duration, int(sample_rate * duration)) audio_data = np.sin(2 * np.pi * 440 * t) # 440 Hz sine wave # Encode the audio data into the bitfield encoded_bitfield = bm.encode_bit(bitfield, audio_data) # Decode the data from the bitfield decoded_data = bm.decode_bit(encoded_bitfield) # For large datasets, use memory-mapped bitfields large_bitfield = bm.mmap_bitfield( file_path="large_dataset.bin", shape=(1000, 1000, 500, 100) ) # Access a chunk of the memory-mapped bitfield chunk = large_bitfield[0:100, 0:100, 0:50, 0:10]
The Oen Collective is a decentralized processing system that dynamically optimizes computational processes. It consists of multiple agent threads that work together to manage different computational domains and make decisions based on a reputation-weighted voting system.
import numpy as np import threading import time import heapq from collections import defaultdict class OenAgent: """ Represents an agent in the Oen Collective, responsible for a specific computational domain. """ def __init__(self, id, domain=None): """ Initialize an Oen agent. Args: id (int): Unique identifier for the agent domain (str, optional): Computational domain for the agent """ self.id = id self.domain = domain if domain else self._assign_domain(id) self.reputation = 50 # Start with neutral reputation (0-100) self.tasks_completed = 0 self.running = False self.thread = None def _assign_domain(self, id): """ Assign a domain based on the agent ID. Args: id (int): Agent ID Returns: str: Assigned domain """ domains = ['storage', 'rendering', 'resilience', 'network', 'processing', 'optimization', 'analysis', 'coordination'] return domains[id % len(domains)] def start(self): """ Start the agent in a separate thread. Returns: OenAgent: The agent instance """ if not self.running: self.running = True self.thread = threading.Thread(target=self._run) self.thread.daemon = True self.thread.start() return self def stop(self): """ Stop the agent. Returns: OenAgent: The agent instance """ self.running = False if self.thread and self.thread.is_alive(): self.thread.join(timeout=1.0) return self def _run(self): """ Main agent loop. """ while self.running: # Agent processing logic time.sleep(0.1) # Prevent CPU hogging def process(self, data): """ Process data using the agent's domain expertise. Args: data: The data to process Returns: The processed data """ # Process data based on the agent's domain if self.domain == 'storage': return self._process_storage(data) elif self.domain == 'rendering': return self._process_rendering(data) elif self.domain == 'resilience': return self._process_resilience(data) elif self.domain == 'network': return self._process_network(data) elif self.domain == 'processing': return self._process_computation(data) elif self.domain == 'optimization': return self._process_optimization(data) elif self.domain == 'analysis': return self._process_analysis(data) elif self.domain == 'coordination': return self._process_coordination(data) else: return data # Default: return data unchanged def _process_storage(self, data): """Process data for storage optimization.""" # Simulate compression if isinstance(data, np.ndarray): # Apply a simple compression algorithm (for demonstration) shape = data.shape flattened = data.flatten() # Keep only values above mean as a simple "compression" mean_val = np.mean(flattened) compressed = flattened[flattened > mean_val] # Store the compression metadata metadata = { 'original_shape': shape, 'compression_threshold': mean_val, 'compression_ratio': len(compressed) / len(flattened) } # Update reputation based on compression ratio self._update_reputation(50 * (1 - metadata['compression_ratio'])) return {'data': compressed, 'metadata': metadata} return data def _process_rendering(self, data): """Process data for rendering optimization.""" # Simulate rendering optimization if isinstance(data, np.ndarray): # Apply a simple rendering optimization (for demonstration) # Convert to lower precision to simulate optimization optimized = data.astype(np.float16) # Calculate optimization metrics memory_saved = (data.nbytes - optimized.nbytes) / data.nbytes # Update reputation based on memory saved self._update_reputation(50 * memory_saved) return optimized return data def _process_resilience(self, data): """Process data for error resilience.""" # Simulate error correction if isinstance(data, np.ndarray): # Apply a simple error correction (for demonstration) # Add redundancy by duplicating every 10th value shape = data.shape flattened = data.flatten() # Introduce a few random errors error_indices = np.random.choice(len(flattened), size=int(len(flattened) * 0.001), replace=False) flattened_with_errors = flattened.copy() flattened_with_errors[error_indices] = np.random.rand(len(error_indices)) # "Correct" the errors by comparing with original # In a real implementation, this would use error correction codes corrected = flattened_with_errors.copy() corrected[error_indices] = flattened[error_indices] # Calculate correction metrics errors_corrected = len(error_indices) correction_rate = errors_corrected / len(flattened) # Update reputation based on correction rate self._update_reputation(50 * correction_rate) # Reshape to original dimensions return corrected.reshape(shape) return data def _process_network(self, data): """Process data for network optimization.""" # Simulate network optimization return data # Simplified implementation def _process_computation(self, data): """Process data for computational optimization.""" # Simulate computational optimization return data # Simplified implementation def _process_optimization(self, data): """Process data for general optimization.""" # Simulate general optimization return data # Simplified implementation def _process_analysis(self, data): """Process data for analysis.""" # Simulate data analysis return data # Simplified implementation def _process_coordination(self, data): """Process data for coordination between agents.""" # Simulate coordination return data # Simplified implementation def _update_reputation(self, change): """ Update the agent's reputation based on task performance. Args: change (float): The amount to change the reputation by """ self.reputation += change self.reputation = max(0, min(90, self.reputation)) # Cap at 0-90 self.tasks_completed += 1 # Reset reputation every 100 tasks if self.tasks_completed >= 100: self.reputation = 50 self.tasks_completed = 0 def spawn_agent(id, domain=None): """ Create a new Oen agent with the specified ID and domain. Args: id (int): Unique identifier for the agent domain (str, optional): Computational domain for the agent Returns: OenAgent: The created agent """ return OenAgent(id, domain) def vote_method(method_score): """ Cast a vote for a processing method based on its score. Args: method_score (dict): Dictionary mapping method names to their scores Returns: str: The selected method name """ if not method_score: return None # Select the method with the highest score return max(method_score.items(), key=lambda x: x[1])[0] def tally_scores(methods): """ Tally the scores for different methods and select the best one. Args: methods (list): List of method names to evaluate Returns: str: The selected method name """ if not methods: return None # Create a dictionary to store method scores method_scores = {} # Evaluate each method (simplified implementation) for method in methods: # In a real implementation, this would evaluate the method's performance # For demonstration, assign random scores method_scores[method] = np.random.randint(50, 100) # Select the method with the highest score return vote_method(method_scores) def assign_zone(vote): """ Assign a zone based on the voting outcome. Args: vote (str): The selected method name Returns: int: The assigned zone ID """ # In a real implementation, this would assign a zone based on the method # For demonstration, return a random zone ID return np.random.randint(0, 100) def astar_path(zone_grid): """ Find the optimal path through zones using A* algorithm. Args: zone_grid (numpy.ndarray): Grid representing zones and their connections Returns: list: The optimal path through zones """ if not isinstance(zone_grid, np.ndarray): raise ValueError("zone_grid must be a numpy array") # Define the start and goal positions start = (0, 0) goal = (zone_grid.shape[0] - 1, zone_grid.shape[1] - 1) # Define the heuristic function (Manhattan distance) def heuristic(a, b): return abs(a[0] - b[0]) + abs(a[1] - b[1]) # Define the neighbors function def neighbors(position): x, y = position candidates = [(x+1, y), (x-1, y), (x, y+1), (x, y-1)] return [p for p in candidates if 0 <= p[0] < zone_grid.shape[0] and 0 <= p[1] < zone_grid.shape[1] and zone_grid[p] == 0] # Initialize the open and closed sets open_set = [] heapq.heappush(open_set, (0, start)) came_from = {} g_score = defaultdict(lambda: float('inf')) g_score[start] = 0 f_score = defaultdict(lambda: float('inf')) f_score[start] = heuristic(start, goal) # A* algorithm while open_set: _, current = heapq.heappop(open_set) if current == goal: # Reconstruct the path path = [] while current in came_from: path.append(current) current = came_from[current] path.append(start) path.reverse() return path for neighbor in neighbors(current): tentative_g_score = g_score[current] + 1 if tentative_g_score < g_score[neighbor]: came_from[neighbor] = current g_score[neighbor] = tentative_g_score f_score[neighbor] = tentative_g_score + heuristic(neighbor, goal) heapq.heappush(open_set, (f_score[neighbor], neighbor)) # No path found return []
import bitmatrix as bm import numpy as np import threading import time # Create Oen agents for different domains storage_agent = bm.spawn_agent(id=1, domain='storage') rendering_agent = bm.spawn_agent(id=2, domain='rendering') resilience_agent = bm.spawn_agent(id=3, domain='resilience') # Create a zone grid for task assignment zone_grid = np.zeros((10, 10), dtype=np.int32) zone_grid[2:5, 2:5] = 1 # Mark some zones as occupied # Find optimal path through zones path = bm.astar_path(zone_grid) print(f"Optimal path: {path}") # Evaluate different compression methods method_scores = { 'huffman': 85, 'lzw': 90, 'rle': 70 } # Vote for the best method selected_method = bm.vote_method(method_scores) print(f"Selected method: {selected_method}") # Assign a zone based on the vote zone_id = bm.assign_zone(selected_method) print(f"Assigned zone: {zone_id}") # Process data using the Oen Collective def process_data(data, agent_id): agent = bm.spawn_agent(id=agent_id) result = agent.process(data) return result # Create sample data data = np.random.rand(100, 100) # Process data using multiple agents in parallel threads = [] results = [None] * 3 for i in range(3): thread = threading.Thread( target=lambda i=i: results.__setitem__(i, process_data(data, i+1)) ) threads.append(thread) thread.start() # Wait for all threads to complete for thread in threads: thread.join() # Combine results from all agents final_result = np.mean(results, axis=0) print(f"Final result shape: {final_result.shape}")
Recursive Layering is a fundamental architectural principle in Bitmatrix2, involving interconnected layers that dynamically communicate and reshape themselves to optimize resource allocation and enhance efficiency.
import numpy as np class Layer: """ Represents a layer in the recursive layering architecture. """ def __init__(self, name, function, next_layer=None): """ Initialize a layer. Args: name (str): Name of the layer function (callable): Function to apply to data next_layer (Layer, optional): Next layer in the chain """ self.name = name self.function = function self.next_layer = next_layer self.feedback = None def process(self, data): """ Process data through this layer and subsequent layers. Args: data: The data to process Returns: The processed data """ # Apply this layer's function to the data processed_data = self.function(data) # Pass the processed data to the next layer if it exists if self.next_layer: result = self.next_layer.process(processed_data) # Store feedback from subsequent layers self.feedback = result # Reshape based on feedback (simplified implementation) if isinstance(result, dict) and 'feedback' in result: # Apply feedback to reshape the layer self._reshape(result['feedback']) return result else: return processed_data def _reshape(self, feedback): """ Reshape the layer based on feedback. Args: feedback: Feedback data for reshaping """ # In a real implementation, this would modify the layer's behavior # For demonstration, just print the feedback print(f"Layer {self.name} reshaping based on feedback: {feedback}") def create_recursive_layers(layer_configs): """ Create a recursive layering structure from configuration. Args: layer_configs (list): List of layer configurations Each config should be a dict with 'name' and 'function' keys Returns: Layer: The first layer in the chain """ if not layer_configs: return None # Create layers in reverse order prev_layer = None for config in reversed(layer_configs): layer = Layer(config['name'], config['function'], prev_layer) prev_layer = layer return prev_layer def layer_feed(layer, next_layer): """ Connect a layer to the next layer in the chain. Args: layer (Layer): The layer to connect from next_layer (Layer): The layer to connect to Returns: Layer: The updated layer """ layer.next_layer = next_layer return layer
import bitmatrix as bm import numpy as np # Define layer functions def base_layer_function(data): """Compress data for storage efficiency.""" print("Base layer: Compressing data") # Simulate compression if isinstance(data, np.ndarray): compressed = data.copy() # Apply simple compression (for demonstration) compressed[compressed < np.mean(compressed)] = 0 return compressed return data def growth_layer_function(data): """Enhance processing speed.""" print("Growth layer: Enhancing processing speed") # Simulate speed enhancement if isinstance(data, np.ndarray): # Apply simple enhancement (for demonstration) enhanced = data.copy() # Simplify data to enhance processing speed enhanced = enhanced.astype(np.float16) return enhanced return data def regulation_layer_function(data): """Ensure data resilience.""" print("Regulation layer: Ensuring data resilience") # Simulate error correction if isinstance(data, np.ndarray): # Apply simple error correction (for demonstration) corrected = data.copy() # Fix any NaN or Inf values corrected[~np.isfinite(corrected)] = 0 return { 'data': corrected, 'feedback': {'error_rate': 0.0005} } return data # Create layer configurations layer_configs = [ {'name': 'base', 'function': base_layer_function}, {'name': 'growth', 'function': growth_layer_function}, {'name': 'regulation', 'function': regulation_layer_function} ] # Create recursive layers layers = bm.create_recursive_layers(layer_configs) # Process data through the layers data = np.random.rand(100, 100) result = layers.process(data) # Access the processed data if isinstance(result, dict) and 'data' in result: processed_data = result['data'] else: processed_data = result print(f"Processed data shape: {processed_data.shape}")
Kinetic Transform Arithmetic (formerly KTA Math) is a set of mathematical functions designed to enhance processing speed within Bitmatrix2. It integrates with every layer of the system to accelerate computations.
import numpy as np # Golden ratio constant PHI = (1 + np.sqrt(5)) / 2 # Approximately 1.618033988749895 def scarab_cycle(n): """ Apply the ScarabCycle formula to stabilize chaotic data. Formula: SC(n) = n + (Φ * n) / (n + 1) Args: n (float or numpy.ndarray): Input value(s) Returns: float or numpy.ndarray: Transformed value(s) """ return n + (PHI * n) / (n + 1) def kta_transform(data, iterations=1): """ Apply Kinetic Transform Arithmetic to accelerate computations. Args: data (numpy.ndarray): Input data iterations (int, optional): Number of iterations to apply Returns: numpy.ndarray: Transformed data """ result = data.copy() for _ in range(iterations): # Apply ScarabCycle formula result = scarab_cycle(result) # Apply additional KTA transformations result = np.sin(result) * np.cos(result) + result # Normalize to prevent overflow if np.max(np.abs(result)) > 0: result = result / np.max(np.abs(result)) return result def kta_compress(data, threshold=0.1): """ Compress data using Kinetic Transform Arithmetic. Args: data (numpy.ndarray): Input data threshold (float, optional): Compression threshold Returns: dict: Compressed data and metadata """ # Apply KTA transform transformed = kta_transform(data) # Compress by removing values below threshold mask = np.abs(transformed) >= threshold compressed = transformed[mask] # Store compression metadata metadata = { 'original_shape': data.shape, 'mask': mask, 'threshold': threshold, 'compression_ratio': len(compressed) / np.prod(data.shape) } return { 'data': compressed, 'metadata': metadata } def kta_decompress(compressed_data): """ Decompress data that was compressed using KTA compression. Args: compressed_data (dict): Compressed data and metadata Returns: numpy.ndarray: Decompressed data """ data = compressed_data['data'] metadata = compressed_data['metadata'] # Recreate the original array decompressed = np.zeros(np.prod(metadata['original_shape'])) # Place the compressed values back in their original positions decompressed[metadata['mask'].flatten()] = data # Reshape to the original dimensions decompressed = decompressed.reshape(metadata['original_shape']) # Apply inverse KTA transform (simplified approximation) result = np.arcsin(decompressed) / PHI return result
import bitmatrix as bm import numpy as np import matplotlib.pyplot as plt # Create sample data x = np.linspace(0, 10, 1000) y = np.sin(x) + np.random.normal(0, 0.1, len(x)) # Apply ScarabCycle formula stabilized = bm.scarab_cycle(y) # Apply KTA transform transformed = bm.kta_transform(y, iterations=3) # Compress using KTA compressed = bm.kta_compress(y, threshold=0.2) print(f"Compression ratio: {compressed['metadata']['compression_ratio']:.2f}") # Decompress decompressed = bm.kta_decompress(compressed) # Plot the results plt.figure(figsize=(12, 8)) plt.subplot(4, 1, 1) plt.title('Original Data') plt.plot(x, y) plt.subplot(4, 1, 2) plt.title('Stabilized with ScarabCycle') plt.plot(x, stabilized) plt.subplot(4, 1, 3) plt.title('KTA Transformed') plt.plot(x, transformed) plt.subplot(4, 1, 4) plt.title('Decompressed after KTA Compression') plt.plot(x, decompressed) plt.tight_layout() plt.savefig('kta_example.png') plt.close() print("KTA example complete. Results saved to 'kta_example.png'")
Multiple compression and error correction codes are used in combination to optimize efficiency and ensure data resilience.
import numpy as np from collections import Counter, defaultdict import heapq def huffman_tree(data): """ Build a Huffman tree for text data compression. Args: data (str or bytes): Input data to compress Returns: dict: Huffman coding table mapping characters to binary codes """ # Count frequency of each character freq = Counter(data) # Create a priority queue (min heap) heap = [[weight, [char, ""]] for char, weight in freq.items()] heapq.heapify(heap) # Build the Huffman tree while len(heap) > 1: lo = heapq.heappop(heap) hi = heapq.heappop(heap) for pair in lo[1:]: pair[1] = '0' + pair[1] for pair in hi[1:]: pair[1] = '1' + pair[1] heapq.heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:]) # Extract the codes huffman_codes = {char: code for char, code in sorted(heap[0][1:])} return huffman_codes def huffman_compress(data): """ Compress data using Huffman coding. Args: data (str or bytes): Input data to compress Returns: dict: Compressed data and metadata """ # Build the Huffman tree codes = huffman_tree(data) # Encode the data encoded = ''.join(codes[char] for char in data) # Convert binary string to bytes # Pad to ensure length is a multiple of 8 padding = 8 - (len(encoded) % 8) if len(encoded) % 8 else 0 encoded += '0' * padding # Convert to bytes encoded_bytes = bytearray() for i in range(0, len(encoded), 8): encoded_bytes.append(int(encoded[i:i+8], 2)) # Calculate compression metrics original_size = len(data) compressed_size = len(encoded_bytes) compression_ratio = compressed_size / original_size return { 'data': encoded_bytes, 'codes': codes, 'padding': padding, 'original_size': original_size, 'compressed_size': compressed_size, 'compression_ratio': compression_ratio } def huffman_decompress(compressed): """ Decompress data that was compressed using Huffman coding. Args: compressed (dict): Compressed data and metadata Returns: str or bytes: Decompressed data """ # Extract components encoded_bytes = compressed['data'] codes = compressed['codes'] padding = compressed['padding'] # Convert bytes to binary string encoded = ''.join(format(byte, '08b') for byte in encoded_bytes) # Remove padding encoded = encoded[:-padding] if padding else encoded # Create a reverse mapping of codes reverse_codes = {code: char for char, code in codes.items()} # Decode the data decoded = [] code = "" for bit in encoded: code += bit if code in reverse_codes: decoded.append(reverse_codes[code]) code = "" # Convert back to original format if isinstance(list(codes.keys())[0], int): # If original was bytes, convert back to bytes return bytes(decoded) else: # If original was string, join characters return ''.join(decoded) def run_length(sparse): """ Compress sparse data using Run-Length Encoding. Args: sparse (numpy.ndarray): Input sparse data to compress Returns: dict: Compressed data and metadata """ if not isinstance(sparse, np.ndarray): raise TypeError("Input must be a numpy array") # Flatten the array flattened = sparse.flatten() # Encode using run-length encoding encoded = [] count = 1 current = flattened[0] for i in range(1, len(flattened)): if flattened[i] == current: count += 1 else: encoded.append((current, count)) current = flattened[i] count = 1 # Add the last run encoded.append((current, count)) # Calculate compression metrics original_size = len(flattened) compressed_size = len(encoded) * 2 # Each entry is a pair (value, count) compression_ratio = compressed_size / original_size return { 'data': encoded, 'shape': sparse.shape, 'original_size': original_size, 'compressed_size': compressed_size, 'compression_ratio': compression_ratio } def run_length_decompress(compressed): """ Decompress data that was compressed using Run-Length Encoding. Args: compressed (dict): Compressed data and metadata Returns: numpy.ndarray: Decompressed data """ # Extract components encoded = compressed['data'] shape = compressed['shape'] # Decode the data decoded = [] for value, count in encoded: decoded.extend([value] * count) # Reshape to original dimensions return np.array(decoded).reshape(shape) def lzw_dict(multimedia): """ Compress multimedia data using LZW compression. Args: multimedia (bytes or numpy.ndarray): Input multimedia data to compress Returns: dict: Compressed data and metadata """ # Convert numpy array to bytes if necessary if isinstance(multimedia, np.ndarray): data = multimedia.tobytes() else: data = multimedia # Initialize dictionary with single-byte entries dictionary = {bytes([i]): i for i in range(256)} next_code = 256 # Compress the data compressed = [] current = bytes([data[0]]) for byte in data[1:]: next_byte = bytes([byte]) if current + next_byte in dictionary: current = current + next_byte else: compressed.append(dictionary[current]) dictionary[current + next_byte] = next_code next_code += 1 current = next_byte # Add the last code compressed.append(dictionary[current]) # Calculate compression metrics original_size = len(data) compressed_size = len(compressed) compression_ratio = compressed_size / original_size return { 'data': compressed, 'original_size': original_size, 'compressed_size': compressed_size, 'compression_ratio': compression_ratio, 'is_numpy': isinstance(multimedia, np.ndarray), 'shape': multimedia.shape if isinstance(multimedia, np.ndarray) else None, 'dtype': str(multimedia.dtype) if isinstance(multimedia, np.ndarray) else None } def lzw_decompress(compressed): """ Decompress data that was compressed using LZW compression. Args: compressed (dict): Compressed data and metadata Returns: bytes or numpy.ndarray: Decompressed data """ # Extract components data = compressed['data'] is_numpy = compressed['is_numpy'] # Initialize dictionary with single-byte entries dictionary = {i: bytes([i]) for i in range(256)} next_code = 256 # Decompress the data decompressed = [data[0]] current = dictionary[data[0]] for code in data[1:]: if code in dictionary: entry = dictionary[code] elif code == next_code: entry = current + current[0:1] else: raise ValueError("Invalid compressed data") decompressed.append(entry) dictionary[next_code] = current + entry[0:1] next_code += 1 current = entry # Combine the decompressed bytes result = b''.join(decompressed) # Convert back to numpy array if original was numpy if is_numpy: shape = compressed['shape'] dtype = np.dtype(compressed['dtype']) return np.frombuffer(result, dtype=dtype).reshape(shape) else: return result def rs_correct(burst): """ Apply Reed-Solomon error correction to fix burst errors. Args: burst (bytes or numpy.ndarray): Input data with potential burst errors Returns: bytes or numpy.ndarray: Error-corrected data """ # This is a simplified implementation of Reed-Solomon error correction # In a real implementation, this would use a proper Reed-Solomon library # For demonstration, we'll just simulate error correction if isinstance(burst, np.ndarray): # Create a copy to avoid modifying the original corrected = burst.copy() # Simulate error correction by fixing any NaN or Inf values if np.issubdtype(corrected.dtype, np.floating): corrected[~np.isfinite(corrected)] = 0 return corrected else: # For bytes, just return the original (in a real implementation, this would correct errors) return burst def hamming_fix(single): """ Apply Hamming code error correction to fix single-bit errors. Args: single (bytes or numpy.ndarray): Input data with potential single-bit errors Returns: bytes or numpy.ndarray: Error-corrected data """ # This is a simplified implementation of Hamming code error correction # In a real implementation, this would use a proper Hamming code library # For demonstration, we'll just simulate error correction if isinstance(single, np.ndarray): # Create a copy to avoid modifying the original corrected = single.copy() # Simulate error correction by fixing any extreme outliers if np.issubdtype(corrected.dtype, np.number): mean = np.mean(corrected) std = np.std(corrected) outliers = np.abs(corrected - mean) > 3 * std corrected[outliers] = mean return corrected else: # For bytes, just return the original (in a real implementation, this would correct errors) return single
import bitmatrix as bm import numpy as np import matplotlib.pyplot as plt # Create sample text data text_data = "This is a sample text for Huffman compression. " * 10 # Compress using Huffman coding huffman_compressed = bm.huffman_compress(text_data) print(f"Huffman compression ratio: {huffman_compressed['compression_ratio']:.2f}") # Decompress huffman_decompressed = bm.huffman_decompress(huffman_compressed) print(f"Huffman decompression successful: {huffman_decompressed == text_data}") # Create sample sparse data sparse_data = np.zeros((100, 100)) sparse_data[10:20, 10:20] = 1 sparse_data[50:60, 50:60] = 2 # Compress using Run-Length Encoding rle_compressed = bm.run_length(sparse_data) print(f"RLE compression ratio: {rle_compressed['compression_ratio']:.2f}") # Decompress rle_decompressed = bm.run_length_decompress(rle_compressed) print(f"RLE decompression successful: {np.array_equal(rle_decompressed, sparse_data)}") # Create sample multimedia data multimedia_data = np.random.randint(0, 256, (50, 50, 3), dtype=np.uint8) # Compress using LZW lzw_compressed = bm.lzw_dict(multimedia_data) print(f"LZW compression ratio: {lzw_compressed['compression_ratio']:.2f}") # Decompress lzw_decompressed = bm.lzw_decompress(lzw_compressed) print(f"LZW decompression successful: {np.array_equal(lzw_decompressed, multimedia_data)}") # Apply error correction # Create data with simulated errors data_with_errors = multimedia_data.copy().astype(float) data_with_errors[10:15, 10:15, 0] = np.nan # Simulate burst errors data_with_errors[30, 30, 1] = np.inf # Simulate single-bit error # Apply Reed-Solomon correction for burst errors rs_corrected = bm.rs_correct(data_with_errors) print(f"Reed-Solomon correction applied, fixed NaN values: {not np.any(np.isnan(rs_corrected))}") # Apply Hamming correction for single-bit errors hamming_corrected = bm.hamming_fix(rs_corrected) print(f"Hamming correction applied, fixed Inf values: {not np.any(np.isinf(hamming_corrected))}") # Plot the results plt.figure(figsize=(15, 10)) plt.subplot(2, 2, 1) plt.title('Original Sparse Data') plt.imshow(sparse_data, cmap='viridis') plt.subplot(2, 2, 2) plt.title('RLE Decompressed Data') plt.imshow(rle_decompressed, cmap='viridis') plt.subplot(2, 2, 3) plt.title('Original Multimedia Data') plt.imshow(multimedia_data) plt.subplot(2, 2, 4) plt.title('Error Corrected Data') plt.imshow(hamming_corrected.astype(np.uint8)) plt.tight_layout() plt.savefig('compression_example.png') plt.close() print("Compression example complete. Results saved to 'compression_example.png'")
Memory-mapped bitfields enable scaling to handle very large datasets using limited RAM.
import numpy as np import mmap import os import tempfile def create_mmap_file(size, file_path=None): """ Create a file for memory mapping. Args: size (int): Size of the file in bytes file_path (str, optional): Path to the file. If None, a temporary file is created. Returns: str: Path to the created file """ if file_path is None: # Create a temporary file fd, file_path = tempfile.mkstemp(suffix='.bin') os.close(fd) # Create the file with the specified size with open(file_path, 'wb') as f: f.seek(size - 1) f.write(b'\0') return file_path def mmap_open(file_path, shape, dtype=np.float32, access_mode='r+'): """ Open a memory-mapped array. Args: file_path (str): Path to the file to memory-map shape (tuple): Shape of the array dtype (numpy.dtype, optional): Data type of the array access_mode (str, optional): File access mode Returns: numpy.memmap: Memory-mapped array """ return np.memmap(file_path, dtype=dtype, mode=access_mode, shape=shape) def access_chunk(mmap_array, offset, size): """ Access a chunk of a memory-mapped array. Args: mmap_array (numpy.memmap): Memory-mapped array offset (tuple): Offset indices for each dimension size (tuple): Size of the chunk for each dimension Returns: numpy.ndarray: Chunk of the memory-mapped array """ # Create slices for each dimension slices = tuple(slice(o, o + s) for o, s in zip(offset, size)) # Access the chunk return mmap_array[slices] def write_chunk(mmap_array, offset, chunk): """ Write a chunk to a memory-mapped array. Args: mmap_array (numpy.memmap): Memory-mapped array offset (tuple): Offset indices for each dimension chunk (numpy.ndarray): Chunk to write Returns: numpy.memmap: Updated memory-mapped array """ # Create slices for each dimension slices = tuple(slice(o, o + s) for o, s in zip(offset, chunk.shape)) # Write the chunk mmap_array[slices] = chunk # Flush changes to disk mmap_array.flush() return mmap_array def process_large_dataset(file_path, shape, chunk_size, process_func): """ Process a large dataset in chunks using memory mapping. Args: file_path (str): Path to the file to memory-map shape (tuple): Shape of the array chunk_size (tuple): Size of each chunk process_func (callable): Function to apply to each chunk Returns: numpy.memmap: Processed memory-mapped array """ # Open the memory-mapped array mmap_array = mmap_open(file_path, shape) # Calculate the number of chunks in each dimension num_chunks = tuple(int(np.ceil(s / c)) for s, c in zip(shape, chunk_size)) # Process each chunk for indices in np.ndindex(*num_chunks): # Calculate the offset for this chunk offset = tuple(i * c for i, c in zip(indices, chunk_size)) # Calculate the actual size of this chunk (may be smaller at edges) actual_size = tuple(min(c, s - o) for c, s, o in zip(chunk_size, shape, offset)) # Access the chunk chunk = access_chunk(mmap_array, offset, actual_size) # Process the chunk processed_chunk = process_func(chunk) # Write the processed chunk back write_chunk(mmap_array, offset, processed_chunk) return mmap_array
import bitmatrix as bm import numpy as np import os import time # Create a large dataset (100MB) shape = (5000, 5000) size = np.prod(shape) * np.dtype(np.float32).itemsize # About 100MB print(f"Creating a dataset of size: {size / (1024 * 1024):.2f} MB") # Create a file for memory mapping file_path = bm.create_mmap_file(size) print(f"Created memory-mapped file: {file_path}") # Create a memory-mapped array mmap_array = bm.mmap_open(file_path, shape) # Initialize with random data for i in range(0, shape[0], 100): chunk_size = min(100, shape[0] - i) chunk = np.random.rand(chunk_size, shape[1]).astype(np.float32) bm.write_chunk(mmap_array, (i, 0), chunk) print("Initialized memory-mapped array with random data") # Define a processing function def process_func(chunk): """Apply a simple transformation to the chunk.""" return np.sin(chunk) * 2 # Process the large dataset in chunks chunk_size = (100, 5000) # Process 100 rows at a time start_time = time.time() processed_array = bm.process_large_dataset(file_path, shape, chunk_size, process_func) end_time = time.time() print(f"Processed large dataset in {end_time - start_time:.2f} seconds") # Access a small part of the processed array sample = bm.access_chunk(processed_array, (1000, 1000), (10, 10)) print("Sample of processed data:") print(sample) # Clean up del processed_array # Close the memory-mapped file os.remove(file_path) # Remove the file print(f"Removed memory-mapped file: {file_path}")
Self-healing mechanisms repair errors using resonance/context and predict errors preventatively to ensure data integrity.
import numpy as np from scipy import signal def detect_error(data, threshold=3.0): """ Detect errors in data based on statistical outliers. Args: data (numpy.ndarray): Input data to check for errors threshold (float, optional): Z-score threshold for outlier detection Returns: numpy.ndarray: Boolean mask indicating error positions """ if not isinstance(data, np.ndarray): raise TypeError("Input must be a numpy array") # For non-numeric data, return no errors if not np.issubdtype(data.dtype, np.number): return np.zeros_like(data, dtype=bool) # Calculate z-scores mean = np.mean(data) std = np.std(data) if std == 0: return np.zeros_like(data, dtype=bool) z_scores = np.abs((data - mean) / std) # Identify outliers as errors errors = z_scores > threshold return errors def repair_bit(data, error_mask, resonance=5): """ Repair errors in data using contextual resonance. Args: data (numpy.ndarray): Input data containing errors error_mask (numpy.ndarray): Boolean mask indicating error positions resonance (int, optional): Size of the context window for repair Returns: numpy.ndarray: Repaired data """ if not isinstance(data, np.ndarray): raise TypeError("Input must be a numpy array") # Create a copy to avoid modifying the original repaired = data.copy() # For non-numeric data, return the original if not np.issubdtype(repaired.dtype, np.number): return repaired # Get the indices of errors error_indices = np.where(error_mask) # Process each error for idx in zip(*error_indices): # Get the context around the error context_slices = tuple(slice(max(0, i - resonance), min(s, i + resonance + 1)) for i, s in zip(idx, data.shape)) context = data[context_slices] # Create a mask to exclude the error itself and other errors in the context context_error_mask = error_mask[context_slices] valid_mask = ~context_error_mask if np.any(valid_mask): # Use the mean of valid context values for repair repaired[idx] = np.mean(context[valid_mask]) else: # If no valid context, use the global mean repaired[idx] = np.mean(data[~error_mask]) return repaired def predict_error(data, pattern_length=10): """ Predict potential errors based on patterns in the data. Args: data (numpy.ndarray): Input data to analyze pattern_length (int, optional): Length of patterns to look for Returns: numpy.ndarray: Boolean mask indicating predicted error positions """ if not isinstance(data, np.ndarray): raise TypeError("Input must be a numpy array") # For non-numeric data or multi-dimensional arrays, return no predictions if not np.issubdtype(data.dtype, np.number) or data.ndim > 1: return np.zeros_like(data, dtype=bool) # Create a prediction mask predictions = np.zeros_like(data, dtype=bool) # Find autocorrelation to detect patterns autocorr = signal.correlate(data, data, mode='full') autocorr = autocorr[len(data)-1:] # Normalize autocorr = autocorr / np.max(autocorr) # Find peaks in autocorrelation (potential pattern periods) peaks, _ = signal.find_peaks(autocorr, height=0.5) if len(peaks) > 1: # Use the first significant peak as the pattern period period = peaks[1] # Predict values based on the pattern for i in range(period, len(data)): predicted = data[i - period] actual = data[i] # If the actual value deviates significantly from the predicted value, # mark it as a potential error if abs(actual - predicted) > 3 * np.std(data): predictions[i] = True return predictions def self_heal(data, resonance=5, pattern_length=10): """ Apply self-healing to data by detecting and repairing errors. Args: data (numpy.ndarray): Input data to heal resonance (int, optional): Size of the context window for repair pattern_length (int, optional): Length of patterns to look for Returns: dict: Healed data and healing statistics """ if not isinstance(data, np.ndarray): raise TypeError("Input must be a numpy array") # Create a copy to avoid modifying the original healed = data.copy() # Detect existing errors error_mask = detect_error(data) num_errors = np.sum(error_mask) # Repair detected errors if num_errors > 0: healed = repair_bit(healed, error_mask, resonance) # Predict potential errors predicted_mask = predict_error(healed, pattern_length) num_predicted = np.sum(predicted_mask) # Repair predicted errors if num_predicted > 0: healed = repair_bit(healed, predicted_mask, resonance) # Calculate healing statistics total_elements = np.prod(data.shape) error_rate = num_errors / total_elements prediction_rate = num_predicted / total_elements return { 'data': healed, 'num_errors': num_errors, 'num_predicted': num_predicted, 'error_rate': error_rate, 'prediction_rate': prediction_rate }
import bitmatrix as bm import numpy as np import matplotlib.pyplot as plt # Create sample data with errors x = np.linspace(0, 10, 1000) y = np.sin(x) # Add some random errors error_indices = np.random.choice(len(y), 20, replace=False) y[error_indices] = np.random.uniform(-5, 5, 20) # Add a pattern with a predictable error pattern = np.sin(np.linspace(0, 2*np.pi, 100)) for i in range(5): start = 200 + i*100 y[start:start+100] = pattern # Add a predictable error at the end of each pattern if i > 0: y[start+99] = -1 # Detect errors error_mask = bm.detect_error(y) print(f"Detected {np.sum(error_mask)} errors") # Repair errors repaired = bm.repair_bit(y, error_mask) # Predict errors predicted_mask = bm.predict_error(repaired) print(f"Predicted {np.sum(predicted_mask)} potential errors") # Apply self-healing healed_result = bm.self_heal(y) healed = healed_result['data'] print(f"Self-healing statistics:") print(f" Number of errors detected: {healed_result['num_errors']}") print(f" Number of errors predicted: {healed_result['num_predicted']}") print(f" Error rate: {healed_result['error_rate']:.6f}") print(f" Prediction rate: {healed_result['prediction_rate']:.6f}") # Plot the results plt.figure(figsize=(12, 8)) plt.subplot(3, 1, 1) plt.title('Original Data with Errors') plt.plot(x, y) plt.scatter(x[error_mask], y[error_mask], color='red', label='Detected Errors') plt.legend() plt.subplot(3, 1, 2) plt.title('Repaired Data with Predicted Errors') plt.plot(x, repaired) plt.scatter(x[predicted_mask], repaired[predicted_mask], color='orange', label='Predicted Errors') plt.legend() plt.subplot(3, 1, 3) plt.title('Self-Healed Data') plt.plot(x, healed) plt.plot(x, np.sin(x), 'g--', alpha=0.5, label='True Signal') plt.legend() plt.tight_layout() plt.savefig('self_healing_example.png') plt.close() print("Self-healing example complete. Results saved to 'self_healing_example.png'")
The following examples demonstrate how to integrate multiple Bitmatrix toolkit functions to solve real-world problems.
import bitmatrix as bm import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile # Create a synthetic audio signal sample_rate = 44100 duration = 3.0 # seconds t = np.linspace(0, duration, int(sample_rate * duration)) audio_data = np.sin(2 * np.pi * 440 * t) # 440 Hz sine wave audio_data += 0.5 * np.sin(2 * np.pi * 880 * t) # Add first harmonic audio_data += np.random.normal(0, 0.05, len(audio_data)) # Add noise # Add some errors to the audio error_indices = np.random.choice(len(audio_data), 100, replace=False) audio_data[error_indices] = np.random.uniform(-2, 2, 100) # Normalize the audio data audio_normalized = audio_data / np.max(np.abs(audio_data)) # Initialize a 4D bitfield for the audio data bitfield = bm.init_4d(x=100, y=100, z=50, t=len(audio_normalized) // 1000) # Encode the audio data into the bitfield encoded_bitfield = bm.encode_bit(bitfield, audio_normalized, encoding_method='temporal') # Create Oen agents for different processing stages compression_agent = bm.spawn_agent(id=1, domain='storage') resilience_agent = bm.spawn_agent(id=3, domain='resilience') # Process the encoded audio with the compression agent compressed_data = compression_agent.process(encoded_bitfield) # Apply self-healing to fix errors healed_result = bm.self_heal(compressed_data['data']) healed_data = healed_result['data'] # Add error resilience with the resilience agent resilient_data = resilience_agent.process(healed_data) # Decode the processed audio from the bitfield decoded_audio = bm.decode_bit(resilient_data, decoding_method='temporal') # Resample the decoded audio to match the original sample rate resampled_audio = np.interp( np.linspace(0, len(decoded_audio) - 1, len(audio_normalized)), np.arange(len(decoded_audio)), decoded_audio ) # Plot the original and processed audio plt.figure(figsize=(12, 8)) plt.subplot(3, 1, 1) plt.title('Original Audio with Errors') plt.plot(t[:1000], audio_normalized[:1000]) plt.scatter(t[error_indices[:20]], audio_normalized[error_indices[:20]], color='red', label='Errors') plt.legend() plt.subplot(3, 1, 2) plt.title('Processed Audio (Compressed and Healed)') plt.plot(t[:1000], resampled_audio[:1000]) plt.subplot(3, 1, 3) plt.title('Frequency Domain Comparison') plt.specgram(audio_normalized, NFFT=1024, Fs=sample_rate, noverlap=512, cmap='viridis') plt.ylabel('Frequency (Hz)') plt.xlabel('Time (s)') plt.tight_layout() plt.savefig('audio_processing_example.png') plt.close() print("Audio processing complete. Results saved to 'audio_processing_example.png'") print(f"Compression ratio: {compressed_data['metadata']['compression_ratio']:.2f}") print(f"Number of errors fixed: {healed_result['num_errors']}")
import bitmatrix as bm import numpy as np import matplotlib.pyplot as plt # Create a synthetic image size = 200 x, y = np.meshgrid(np.linspace(-2, 2, size), np.linspace(-2, 2, size)) r = np.sqrt(x**2 + y**2) image = np.sin(5 * r) / (1 + r) image = (image - np.min(image)) / (np.max(image) - np.min(image)) # Normalize to [0, 1] # Add some noise and errors noise = np.random.normal(0, 0.05, image.shape) image_noisy = image + noise error_mask = np.random.random(image.shape) > 0.99 # Random errors (about 1%) image_noisy[error_mask] = np.random.random(np.sum(error_mask)) # Initialize a 3D bitfield for the image data bitfield = bm.init_3d(x=image.shape[0], y=image.shape[1], z=3) # Encode the image data into the bitfield encoded_bitfield = bm.encode_bit(bitfield, image_noisy, encoding_method='spatial') # Create Oen agents for different processing stages compression_agent = bm.spawn_agent(id=1, domain='storage') rendering_agent = bm.spawn_agent(id=2, domain='rendering') # Process the encoded image with the compression agent compressed_data = compression_agent.process(encoded_bitfield) # Apply KTA transform to enhance the image kta_transformed = bm.kta_transform(compressed_data['data'], iterations=2) # Apply self-healing to fix errors healed_result = bm.self_heal(kta_transformed) healed_data = healed_result['data'] # Optimize rendering with the rendering agent rendered_data = rendering_agent.process(healed_data) # Decode the processed image from the bitfield decoded_image = bm.decode_bit(rendered_data, decoding_method='spatial') # Reshape and normalize the decoded image decoded_image = decoded_image.reshape(image.shape) decoded_image = (decoded_image - np.min(decoded_image)) / (np.max(decoded_image) - np.min(decoded_image)) # Plot the original and processed images plt.figure(figsize=(15, 10)) plt.subplot(2, 2, 1) plt.title('Original Clean Image') plt.imshow(image, cmap='viridis') plt.axis('off') plt.subplot(2, 2, 2) plt.title('Noisy Image with Errors') plt.imshow(image_noisy, cmap='viridis') plt.axis('off') plt.subplot(2, 2, 3) plt.title('Processed Image (Compressed, Transformed, Healed)') plt.imshow(decoded_image, cmap='viridis') plt.axis('off') plt.subplot(2, 2, 4) plt.title('Difference (Original - Processed)') plt.imshow(np.abs(image - decoded_image), cmap='hot') plt.colorbar(label='Absolute Difference') plt.axis('off') plt.tight_layout() plt.savefig('image_processing_example.png') plt.close() print("Image processing complete. Results saved to 'image_processing_example.png'") print(f"Compression ratio: {compressed_data['metadata']['compression_ratio']:.2f}") print(f"Number of errors fixed: {healed_result['num_errors']}") print(f"Mean absolute error: {np.mean(np.abs(image - decoded_image)):.4f}")
The following benchmarks demonstrate the performance characteristics of the Bitmatrix toolkit functions.
The Bitmatrix toolkit is designed for high performance, with the following characteristics: