Welcome to the comprehensive documentation for the Bitmatrix Toolkit. This documentation provides complete implementation details for all functions in the Bitmatrix Spatial Computing framework, enabling developers to use and extend the system for practical applications.
The Bitmatrix Toolkit is designed to optimize computational resources, enhance data processing efficiency, and provide a flexible framework for a wide range of applications. This documentation includes complete code implementations, parameter details, return value specifications, error handling guidelines, dependencies, and integration examples.
To use the Bitmatrix Toolkit, the following are required dependencies and set up your environment.
# Clone the repository
git clone https://github.com/bitmatrix/bitmatrix-toolkit.git
# Navigate to the directory
cd bitmatrix-toolkit
# Install dependencies
pip install -r requirements.txt
# Install the package
pip install -e .
# Import the Bitmatrix toolkit
import bitmatrix as bm
# Initialize a 3D bitfield
bitfield = bm.init_3d(x=100, y=100, z=100)
# Encode data into the bitfield
bm.encode_bit(bitfield, data)
# Process data using Oen
agent = bm.spawn_agent(id=1)
result = agent.process(bitfield)
The core architecture of Bitmatrix consists of several key components that work together to create a powerful and flexible computational framework.
The Bitfield is a multidimensional data structure that forms the foundation of Bitmatrix. It enables efficient storage and processing of complex data by representing information in spatial, temporal, and contextual dimensions.
Initialize a 3D bitfield with the specified dimensions.
x (int): Width of the bitfield
y (int): Height of the bitfield
z (int): Depth of the bitfield
dtype (numpy.dtype, optional): Data type for the bitfield. Defaults to custom bit_properties type.
Returns: numpy.ndarray - The initialized 3D bitfield
Initialize a 4D bitfield with the specified dimensions, adding time as the fourth dimension.
x (int): Width of the bitfield
y (int): Height of the bitfield
z (int): Depth of the bitfield
t (int): Time dimension of the bitfield
dtype (numpy.dtype, optional): Data type for the bitfield. Defaults to custom bit_properties type.
Returns: numpy.ndarray - The initialized 4D bitfield
Initialize a 5D bitfield with the specified dimensions, adding context as the fifth dimension.
x (int): Width of the bitfield
y (int): Height of the bitfield
z (int): Depth of the bitfield
t (int): Time dimension of the bitfield
c (int): Context dimension of the bitfield (reality context)
dtype (numpy.dtype, optional): Data type for the bitfield. Defaults to custom bit_properties type.
Returns: numpy.ndarray - The initialized 5D bitfield
Encode data into the bitfield using the specified encoding method.
bitfield (numpy.ndarray): The bitfield to encode data into
data (array-like): The data to encode
encoding_method (str, optional): The encoding method to use. Options: 'auto', 'spatial', 'temporal', 'contextual'. Defaults to 'auto'.
Returns: numpy.ndarray - The bitfield with encoded data
Decode data from the bitfield using the specified decoding method.
bitfield (numpy.ndarray): The bitfield to decode data from
decoding_method (str, optional): The decoding method to use. Options: 'auto', 'spatial', 'temporal', 'contextual'. Defaults to 'auto'.
Returns: array-like - The decoded data
Create a memory-mapped bitfield for handling large datasets.
file_path (str): Path to the file to memory-map
shape (tuple): Shape of the bitfield (e.g., (x, y, z, t))
access_mode (str, optional): File access mode. Defaults to 'r+' (read/write).
Returns: numpy.memmap - The memory-mapped bitfield
import bitmatrix as bm
import numpy as np
# Initialize a 4D bitfield
bitfield = bm.init_4d(x=100, y=100, z=50, t=10)
# Create sample data (e.g., audio waveform)
sample_rate = 44100
duration = 1.0 # seconds
t = np.linspace(0, duration, int(sample_rate * duration))
audio_data = np.sin(2 * np.pi * 440 * t) # 440 Hz sine wave
# Encode the audio data into the bitfield
encoded_bitfield = bm.encode_bit(bitfield, audio_data)
# Decode the data from the bitfield
decoded_data = bm.decode_bit(encoded_bitfield)
# For large datasets, use memory-mapped bitfields
large_bitfield = bm.mmap_bitfield(
file_path="large_dataset.bin",
shape=(1000, 1000, 500, 100)
)
# Access a chunk of the memory-mapped bitfield
chunk = large_bitfield[0:100, 0:100, 0:50, 0:10]
import numpy as np
import mmap
import os
# Define custom dtype for bit properties
bit_properties_dtype = np.dtype([
('value', np.bool_), # 1 bit: The fundamental binary state
('spacing', np.float32), # 4 bytes: Spatial distance between bits
('shape', np.uint8), # 1 byte: Geometric form (cube, sphere, etc.)
('color', np.uint8, 3), # 3 bytes: RGB color
('perspective', np.float16), # 2 bytes: Angular orientation
('frequency', np.float32), # 4 bytes: Temporal rate
('phase', np.float16) # 2 bytes: Wave offset
])
def init_3d(x, y, z, dtype=None):
"""
Initialize a 3D bitfield with the specified dimensions.
Args:
x (int): Width of the bitfield
y (int): Height of the bitfield
z (int): Depth of the bitfield
dtype (numpy.dtype, optional): Data type for the bitfield
Returns:
numpy.ndarray: The initialized 3D bitfield
"""
if dtype is None:
dtype = bit_properties_dtype
# Create the bitfield with the specified dimensions
bitfield = np.zeros((x, y, z), dtype=dtype)
# Initialize default values
bitfield['value'] = False
bitfield['spacing'] = 1.0
bitfield['shape'] = 0 # 0 = cube
bitfield['color'] = [0, 0, 0] # Black
bitfield['perspective'] = 0.0
bitfield['frequency'] = 0.0
bitfield['phase'] = 0.0
return bitfield
def init_4d(x, y, z, t, dtype=None):
"""
Initialize a 4D bitfield with the specified dimensions.
Args:
x (int): Width of the bitfield
y (int): Height of the bitfield
z (int): Depth of the bitfield
t (int): Time dimension of the bitfield
dtype (numpy.dtype, optional): Data type for the bitfield
Returns:
numpy.ndarray: The initialized 4D bitfield
"""
if dtype is None:
dtype = bit_properties_dtype
# Create the bitfield with the specified dimensions
bitfield = np.zeros((x, y, z, t), dtype=dtype)
# Initialize default values
bitfield['value'] = False
bitfield['spacing'] = 1.0
bitfield['shape'] = 0 # 0 = cube
bitfield['color'] = [0, 0, 0] # Black
bitfield['perspective'] = 0.0
bitfield['frequency'] = 0.0
bitfield['phase'] = 0.0
return bitfield
def init_5d(x, y, z, t, c, dtype=None):
"""
Initialize a 5D bitfield with the specified dimensions.
Args:
x (int): Width of the bitfield
y (int): Height of the bitfield
z (int): Depth of the bitfield
t (int): Time dimension of the bitfield
c (int): Context dimension of the bitfield (reality context)
dtype (numpy.dtype, optional): Data type for the bitfield
Returns:
numpy.ndarray: The initialized 5D bitfield
"""
if dtype is None:
dtype = bit_properties_dtype
# Create the bitfield with the specified dimensions
bitfield = np.zeros((x, y, z, t, c), dtype=dtype)
# Initialize default values
bitfield['value'] = False
bitfield['spacing'] = 1.0
bitfield['shape'] = 0 # 0 = cube
bitfield['color'] = [0, 0, 0] # Black
bitfield['perspective'] = 0.0
bitfield['frequency'] = 0.0
bitfield['phase'] = 0.0
return bitfield
def encode_bit(bitfield, data, encoding_method='auto'):
"""
Encode data into the bitfield using the specified encoding method.
Args:
bitfield (numpy.ndarray): The bitfield to encode data into
data (array-like): The data to encode
encoding_method (str, optional): The encoding method to use
Options: 'auto', 'spatial', 'temporal', 'contextual'
Returns:
numpy.ndarray: The bitfield with encoded data
"""
# Make a copy of the bitfield to avoid modifying the original
encoded_bitfield = bitfield.copy()
# Determine the encoding method if 'auto' is specified
if encoding_method == 'auto':
# Determine the best encoding method based on data characteristics
if len(data.shape) == 1: # 1D data (e.g., audio)
encoding_method = 'temporal'
elif len(data.shape) == 2: # 2D data (e.g., image)
encoding_method = 'spatial'
else: # Higher-dimensional data
encoding_method = 'contextual'
# Encode the data using the specified method
if encoding_method == 'spatial':
# Spatial encoding (e.g., for images)
# Map data values to spatial positions in the bitfield
data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data))
# Reshape data if necessary
data_reshaped = np.resize(data_normalized, encoded_bitfield.shape[:3])
# Encode data into the bitfield
for x in range(min(encoded_bitfield.shape[0], data_reshaped.shape[0])):
for y in range(min(encoded_bitfield.shape[1], data_reshaped.shape[1])):
for z in range(min(encoded_bitfield.shape[2], data_reshaped.shape[2])):
# Set the value based on the data
encoded_bitfield[x, y, z]['value'] = data_reshaped[x, y, z] > 0.5
# Set other properties based on the data
encoded_bitfield[x, y, z]['spacing'] = 1.0 + data_reshaped[x, y, z]
encoded_bitfield[x, y, z]['color'] = [
int(255 * data_reshaped[x, y, z]),
int(255 * (1 - data_reshaped[x, y, z])),
int(255 * abs(0.5 - data_reshaped[x, y, z]) * 2)
]
elif encoding_method == 'temporal':
# Temporal encoding (e.g., for audio)
# Map data values to temporal positions in the bitfield
data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data))
# Calculate the number of time steps
t_steps = encoded_bitfield.shape[3] if len(encoded_bitfield.shape) > 3 else 1
# Resample data to match the number of time steps
data_resampled = np.interp(
np.linspace(0, len(data_normalized) - 1, t_steps),
np.arange(len(data_normalized)),
data_normalized
)
# Encode data into the bitfield
for t in range(t_steps):
# Set the value based on the data
encoded_bitfield[:, :, :, t]['value'] = data_resampled[t] > 0.5
# Set frequency and phase based on the data
encoded_bitfield[:, :, :, t]['frequency'] = data_resampled[t] * 1000 # Scale to Hz
encoded_bitfield[:, :, :, t]['phase'] = data_resampled[t] * 2 * np.pi
elif encoding_method == 'contextual':
# Contextual encoding (e.g., for complex data with context)
# This is a more advanced encoding method for 5D bitfields
if len(encoded_bitfield.shape) < 5:
raise ValueError("Contextual encoding requires a 5D bitfield")
# Normalize and reshape data
data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data))
data_reshaped = np.resize(data_normalized, encoded_bitfield.shape[:3])
# Calculate context values
c_steps = encoded_bitfield.shape[4]
# Encode data into the bitfield with context
for c in range(c_steps):
context_factor = c / (c_steps - 1) # 0 to 1
for x in range(encoded_bitfield.shape[0]):
for y in range(encoded_bitfield.shape[1]):
for z in range(encoded_bitfield.shape[2]):
# Apply context-based transformation
value = data_reshaped[x, y, z] * (1 + context_factor)
# Set the value based on the transformed data
encoded_bitfield[x, y, z, :, c]['value'] = value > 0.5
# Set other properties based on the context
encoded_bitfield[x, y, z, :, c]['spacing'] = 1.0 + context_factor
encoded_bitfield[x, y, z, :, c]['shape'] = int(c % 5) # Vary shape by context
return encoded_bitfield
def decode_bit(bitfield, decoding_method='auto'):
"""
Decode data from the bitfield using the specified decoding method.
Args:
bitfield (numpy.ndarray): The bitfield to decode data from
decoding_method (str, optional): The decoding method to use
Options: 'auto', 'spatial', 'temporal', 'contextual'
Returns:
array-like: The decoded data
"""
# Determine the decoding method if 'auto' is specified
if decoding_method == 'auto':
# Determine the best decoding method based on bitfield dimensions
if len(bitfield.shape) == 3: # 3D bitfield
decoding_method = 'spatial'
elif len(bitfield.shape) == 4: # 4D bitfield
decoding_method = 'temporal'
elif len(bitfield.shape) == 5: # 5D bitfield
decoding_method = 'contextual'
else:
raise ValueError("Unsupported bitfield dimensions")
# Decode the data using the specified method
if decoding_method == 'spatial':
# Spatial decoding (e.g., for images)
# Extract data from spatial positions in the bitfield
decoded_data = np.zeros(bitfield.shape[:3])
for x in range(bitfield.shape[0]):
for y in range(bitfield.shape[1]):
for z in range(bitfield.shape[2]):
# Combine value and other properties to reconstruct the data
value_component = float(bitfield[x, y, z]['value'])
spacing_component = (bitfield[x, y, z]['spacing'] - 1.0) / 2.0
color_component = np.mean(bitfield[x, y, z]['color']) / 255.0
# Weighted combination of components
decoded_data[x, y, z] = 0.5 * value_component + 0.3 * spacing_component + 0.2 * color_component
elif decoding_method == 'temporal':
# Temporal decoding (e.g., for audio)
# Extract data from temporal positions in the bitfield
t_steps = bitfield.shape[3]
decoded_data = np.zeros(t_steps)
for t in range(t_steps):
# Average the values across spatial dimensions
value_component = np.mean(bitfield[:, :, :, t]['value'].astype(float))
# Combine with frequency and phase information
frequency_component = np.mean(bitfield[:, :, :, t]['frequency']) / 1000.0 # Scale from Hz
phase_component = np.mean(bitfield[:, :, :, t]['phase']) / (2 * np.pi)
# Weighted combination of components
decoded_data[t] = 0.4 * value_component + 0.4 * frequency_component + 0.2 * phase_component
elif decoding_method == 'contextual':
# Contextual decoding (e.g., for complex data with context)
# This is a more advanced decoding method for 5D bitfields
if len(bitfield.shape) < 5:
raise ValueError("Contextual decoding requires a 5D bitfield")
# Extract data with context consideration
c_steps = bitfield.shape[4]
decoded_data = np.zeros(bitfield.shape[:3])
for c in range(c_steps):
context_factor = c / (c_steps - 1) # 0 to 1
context_weight = np.sin(context_factor * np.pi) # Weight context importance
for x in range(bitfield.shape[0]):
for y in range(bitfield.shape[1]):
for z in range(bitfield.shape[2]):
# Extract value with context consideration
value_component = np.mean(bitfield[x, y, z, :, c]['value'].astype(float))
# Apply context-based transformation
value = value_component / (1 + context_factor)
# Add to decoded data with context weighting
decoded_data[x, y, z] += value * context_weight
# Normalize by total context weights
total_context_weight = sum(np.sin(c / (c_steps - 1) * np.pi) for c in range(c_steps))
decoded_data /= total_context_weight
return decoded_data
def mmap_bitfield(file_path, shape, access_mode='r+'):
"""
Create a memory-mapped bitfield for handling large datasets.
Args:
file_path (str): Path to the file to memory-map
shape (tuple): Shape of the bitfield (e.g., (x, y, z, t))
access_mode (str, optional): File access mode. Defaults to 'r+' (read/write).
Returns:
numpy.memmap: The memory-mapped bitfield
"""
# Calculate the size of the bitfield
dtype = bit_properties_dtype
itemsize = dtype.itemsize
total_size = np.prod(shape) * itemsize
# Create the file if it doesn't exist
if not os.path.exists(file_path) or os.path.getsize(file_path) != total_size:
with open(file_path, 'wb') as f:
f.seek(total_size - 1)
f.write(b'\0')
# Create the memory-mapped array
mmap_bitfield = np.memmap(file_path, dtype=dtype, mode=access_mode, shape=shape)
return mmap_bitfield
The Oen Collective is a decentralized processing system that dynamically optimizes computational processes. It consists of multiple agent threads that work together to manage different computational domains and make decisions based on a reputation-weighted voting system.
Create a new Oen agent with the specified ID and domain.
id (int): Unique identifier for the agent
domain (str, optional): Computational domain for the agent (e.g., 'storage', 'rendering'). If None, a domain will be assigned automatically.
Returns: OenAgent - The created agent
Cast a vote for a processing method based on its score.
method_score (dict): Dictionary mapping method names to their scores
Returns: str - The selected method name
Tally the scores for different methods and select the best one.
methods (list): List of method names to evaluate
Returns: str - The selected method name
Assign a zone based on the voting outcome.
vote (str): The selected method name
Returns: int - The assigned zone ID
Find the optimal path through zones using A* algorithm.
zone_grid (numpy.ndarray): Grid representing zones and their connections
Returns: list - The optimal path through zones
import bitmatrix as bm
import numpy as np
import threading
import time
# Create Oen agents for different domains
storage_agent = bm.spawn_agent(id=1, domain='storage')
rendering_agent = bm.spawn_agent(id=2, domain='rendering')
resilience_agent = bm.spawn_agent(id=3, domain='resilience')
# Create a zone grid for task assignment
zone_grid = np.zeros((10, 10), dtype=np.int32)
zone_grid[2:5, 2:5] = 1 # Mark some zones as occupied
# Find optimal path through zones
path = bm.astar_path(zone_grid)
print(f"Optimal path: {path}")
# Evaluate different compression methods
method_scores = {
'huffman': 85,
'lzw': 90,
'rle': 70
}
# Vote for the best method
selected_method = bm.vote_method(method_scores)
print(f"Selected method: {selected_method}")
# Assign a zone based on the vote
zone_id = bm.assign_zone(selected_method)
print(f"Assigned zone: {zone_id}")
# Process data using the Oen Collective
def process_data(data, agent_id):
agent = bm.spawn_agent(id=agent_id)
result = agent.process(data)
return result
# Create sample data
data = np.random.rand(100, 100)
# Process data using multiple agents in parallel
threads = []
results = [None] * 3
for i in range(3):
thread = threading.Thread(
target=lambda i=i: results.__setitem__(i, process_data(data, i+1))
)
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
# Combine results from all agents
final_result = np.mean(results, axis=0)
print(f"Final result shape: {final_result.shape}")
import numpy as np
import threading
import time
import heapq
from collections import defaultdict
class OenAgent:
"""
Represents an agent in the Oen Collective, responsible for a specific computational domain.
"""
def __init__(self, id, domain=None):
"""
Initialize an Oen agent.
Args:
id (int): Unique identifier for the agent
domain (str, optional): Computational domain for the agent
"""
self.id = id
self.domain = domain if domain else self._assign_domain(id)
self.reputation = 50 # Start with neutral reputation (0-100)
self.tasks_completed = 0
self.running = False
self.thread = None
def _assign_domain(self, id):
"""
Assign a domain based on the agent ID.
Args:
id (int): Agent ID
Returns:
str: Assigned domain
"""
domains = ['storage', 'rendering', 'resilience', 'network', 'processing',
'optimization', 'analysis', 'coordination']
return domains[id % len(domains)]
def start(self):
"""
Start the agent in a separate thread.
Returns:
OenAgent: The agent instance
"""
if not self.running:
self.running = True
self.thread = threading.Thread(target=self._run)
self.thread.daemon = True
self.thread.start()
return self
def stop(self):
"""
Stop the agent.
Returns:
OenAgent: The agent instance
"""
self.running = False
if self.thread and self.thread.is_alive():
self.thread.join(timeout=1.0)
return self
def _run(self):
"""
Main agent loop.
"""
while self.running:
# Agent processing logic
time.sleep(0.1) # Prevent CPU hogging
def process(self, data):
"""
Process data using the agent's domain expertise.
Args:
data: The data to process
Returns:
The processed data
"""
# Process data based on the agent's domain
if self.domain == 'storage':
return self._process_storage(data)
elif self.domain == 'rendering':
return self._process_rendering(data)
elif self.domain == 'resilience':
return self._process_resilience(data)
elif self.domain == 'network':
return self._process_network(data)
elif self.domain == 'processing':
return self._process_computation(data)
elif self.domain == 'optimization':
return self._process_optimization(data)
elif self.domain == 'analysis':
return self._process_analysis(data)
elif self.domain == 'coordination':
return self._process_coordination(data)
else:
return data # Default: return data unchanged
def _process_storage(self, data):
"""Process data for storage optimization."""
# Simulate compression
if isinstance(data, np.ndarray):
# Apply a simple compression algorithm (for demonstration)
shape = data.shape
flattened = data.flatten()
# Keep only values above mean as a simple "compression"
mean_val = np.mean(flattened)
compressed = flattened[flattened > mean_val]
# Store the compression metadata
metadata = {
'original_shape': shape,
'compression_threshold': mean_val,
'compression_ratio': len(compressed) / len(flattened)
}
# Update reputation based on compression ratio
self._update_reputation(50 * (1 - metadata['compression_ratio']))
return {'data': compressed, 'metadata': metadata}
return data
def _process_rendering(self, data):
"""Process data for rendering optimization."""
# Simulate rendering optimization
if isinstance(data, np.ndarray):
# Apply a simple rendering optimization (for demonstration)
# Convert to lower precision to simulate optimization
optimized = data.astype(np.float16)
# Calculate optimization metrics
memory_saved = (data.nbytes - optimized.nbytes) / data.nbytes
# Update reputation based on memory saved
self._update_reputation(50 * memory_saved)
return optimized
return data
def _process_resilience(self, data):
"""Process data for error resilience."""
# Simulate error correction
if isinstance(data, np.ndarray):
# Apply a simple error correction (for demonstration)
# Add redundancy by duplicating every 10th value
shape = data.shape
flattened = data.flatten()
# Introduce a few random errors
error_indices = np.random.choice(len(flattened), size=int(len(flattened) * 0.001), replace=False)
flattened_with_errors = flattened.copy()
flattened_with_errors[error_indices] = np.random.rand(len(error_indices))
# "Correct" the errors by comparing with original
# In a real implementation, this would use error correction codes
corrected = flattened_with_errors.copy()
corrected[error_indices] = flattened[error_indices]
# Calculate correction metrics
errors_corrected = len(error_indices)
correction_rate = errors_corrected / len(flattened)
# Update reputation based on correction rate
self._update_reputation(50 * correction_rate)
# Reshape to original dimensions
return corrected.reshape(shape)
return data
def _process_network(self, data):
"""Process data for network optimization."""
# Simulate network optimization
return data # Simplified implementation
def _process_computation(self, data):
"""Process data for computational optimization."""
# Simulate computational optimization
return data # Simplified implementation
def _process_optimization(self, data):
"""Process data for general optimization."""
# Simulate general optimization
return data # Simplified implementation
def _process_analysis(self, data):
"""Process data for analysis."""
# Simulate data analysis
return data # Simplified implementation
def _process_coordination(self, data):
"""Process data for coordination between agents."""
# Simulate coordination
return data # Simplified implementation
def _update_reputation(self, change):
"""
Update the agent's reputation based on task performance.
Args:
change (float): The amount to change the reputation by
"""
self.reputation += change
self.reputation = max(0, min(90, self.reputation)) # Cap at 0-90
self.tasks_completed += 1
# Reset reputation every 100 tasks
if self.tasks_completed >= 100:
self.reputation = 50
self.tasks_completed = 0
def spawn_agent(id, domain=None):
"""
Create a new Oen agent with the specified ID and domain.
Args:
id (int): Unique identifier for the agent
domain (str, optional): Computational domain for the agent
Returns:
OenAgent: The created agent
"""
return OenAgent(id, domain)
def vote_method(method_score):
"""
Cast a vote for a processing method based on its score.
Args:
method_score (dict): Dictionary mapping method names to their scores
Returns:
str: The selected method name
"""
if not method_score:
return None
# Select the method with the highest score
return max(method_score.items(), key=lambda x: x[1])[0]
def tally_scores(methods):
"""
Tally the scores for different methods and select the best one.
Args:
methods (list): List of method names to evaluate
Returns:
str: The selected method name
"""
if not methods:
return None
# Create a dictionary to store method scores
method_scores = {}
# Evaluate each method (simplified implementation)
for method in methods:
# In a real implementation, this would evaluate the method's performance
# For demonstration, assign random scores
method_scores[method] = np.random.randint(50, 100)
# Select the method with the highest score
return vote_method(method_scores)
def assign_zone(vote):
"""
Assign a zone based on the voting outcome.
Args:
vote (str): The selected method name
Returns:
int: The assigned zone ID
"""
# In a real implementation, this would assign a zone based on the method
# For demonstration, return a random zone ID
return np.random.randint(0, 100)
def astar_path(zone_grid):
"""
Find the optimal path through zones using A* algorithm.
Args:
zone_grid (numpy.ndarray): Grid representing zones and their connections
Returns:
list: The optimal path through zones
"""
if not isinstance(zone_grid, np.ndarray):
raise ValueError("zone_grid must be a numpy array")
# Define the start and goal positions
start = (0, 0)
goal = (zone_grid.shape[0] - 1, zone_grid.shape[1] - 1)
# Define the heuristic function (Manhattan distance)
def heuristic(a, b):
return abs(a[0] - b[0]) + abs(a[1] - b[1])
# Define the neighbors function
def neighbors(position):
x, y = position
candidates = [(x+1, y), (x-1, y), (x, y+1), (x, y-1)]
return [p for p in candidates if 0 <= p[0] < zone_grid.shape[0] and
0 <= p[1] < zone_grid.shape[1] and
zone_grid[p] == 0]
# Initialize the open and closed sets
open_set = []
heapq.heappush(open_set, (0, start))
came_from = {}
g_score = defaultdict(lambda: float('inf'))
g_score[start] = 0
f_score = defaultdict(lambda: float('inf'))
f_score[start] = heuristic(start, goal)
# A* algorithm
while open_set:
_, current = heapq.heappop(open_set)
if current == goal:
# Reconstruct the path
path = []
while current in came_from:
path.append(current)
current = came_from[current]
path.append(start)
path.reverse()
return path
for neighbor in neighbors(current):
tentative_g_score = g_score[current] + 1
if tentative_g_score < g_score[neighbor]:
came_from[neighbor] = current
g_score[neighbor] = tentative_g_score
f_score[neighbor] = tentative_g_score + heuristic(neighbor, goal)
heapq.heappush(open_set, (f_score[neighbor], neighbor))
# No path found
return []
The following examples demonstrate how to integrate multiple Bitmatrix toolkit functions to solve real-world problems.
import bitmatrix as bm
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
# Load an audio file
sample_rate, audio_data = wavfile.read('sample.wav')
# Convert to mono if stereo
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1)
# Normalize the audio data
audio_normalized = audio_data / np.max(np.abs(audio_data))
# Initialize a 4D bitfield for the audio data
bitfield = bm.init_4d(x=100, y=100, z=50, t=len(audio_normalized) // 1000)
# Encode the audio data into the bitfield
encoded_bitfield = bm.encode_bit(bitfield, audio_normalized, encoding_method='temporal')
# Create Oen agents for different processing stages
compression_agent = bm.spawn_agent(id=1, domain='storage')
effect_agent = bm.spawn_agent(id=2, domain='processing')
resilience_agent = bm.spawn_agent(id=3, domain='resilience')
# Process the encoded audio with the compression agent
compressed_data = compression_agent.process(encoded_bitfield)
# Apply audio effects with the effect agent
# In this example, we'll use AudioWarp to create a warped version of the audio
warped_data = bm.AudioWarp(compressed_data['data'])
# Add error resilience with the resilience agent
resilient_data = resilience_agent.process(warped_data)
# Decode the processed audio from the bitfield
decoded_audio = bm.decode_bit(resilient_data, decoding_method='temporal')
# Resample the decoded audio to match the original sample rate
resampled_audio = np.interp(
np.linspace(0, len(decoded_audio) - 1, len(audio_normalized)),
np.arange(len(decoded_audio)),
decoded_audio
)
# Save the processed audio
wavfile.write('processed.wav', sample_rate, (resampled_audio * 32767).astype(np.int16))
# Plot the original and processed audio
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
plt.title('Original Audio')
plt.plot(audio_normalized[:1000])
plt.subplot(2, 1, 2)
plt.title('Processed Audio')
plt.plot(resampled_audio[:1000])
plt.tight_layout()
plt.savefig('audio_comparison.png')
plt.close()
print("Audio processing complete. Saved to 'processed.wav'")
print(f"Compression ratio: {compressed_data['metadata']['compression_ratio']:.2f}")
import bitmatrix as bm
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
# Load an image
image = np.array(Image.open('sample.jpg'))
# Initialize a 3D bitfield for the image data
bitfield = bm.init_3d(x=image.shape[0], y=image.shape[1], z=3)
# Encode the image data into the bitfield
encoded_bitfield = bm.encode_bit(bitfield, image, encoding_method='spatial')
# Create Oen agents for different processing stages
compression_agent = bm.spawn_agent(id=1, domain='storage')
rendering_agent = bm.spawn_agent(id=2, domain='rendering')
# Process the encoded image with the compression agent
compressed_data = compression_agent.process(encoded_bitfield)
# Apply image transformations
# In this example, we'll use ImageTwist to create a twisted version of the image
twisted_data = bm.ImageTwist(compressed_data['data'])
# Optimize rendering with the rendering agent
rendered_data = rendering_agent.process(twisted_data)
# Decode the processed image from the bitfield
decoded_image = bm.decode_bit(rendered_data, decoding_method='spatial')
# Reshape and normalize the decoded image
decoded_image = decoded_image.reshape(image.shape)
decoded_image = (decoded_image - np.min(decoded_image)) / (np.max(decoded_image) - np.min(decoded_image))
decoded_image = (decoded_image * 255).astype(np.uint8)
# Save the processed image
Image.fromarray(decoded_image).save('processed.jpg')
# Plot the original and processed images
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title('Original Image')
plt.imshow(image)
plt.axis('off')
plt.subplot(1, 2, 2)
plt.title('Processed Image')
plt.imshow(decoded_image)
plt.axis('off')
plt.tight_layout()
plt.savefig('image_comparison.png')
plt.close()
print("Image processing complete. Saved to 'processed.jpg'")
print(f"Compression ratio: {compressed_data['metadata']['compression_ratio']:.2f}")
The following benchmarks demonstrate the performance characteristics of the Bitmatrix toolkit functions.
import bitmatrix as bm
import numpy as np
import time
import matplotlib.pyplot as plt
def benchmark_function(func, *args, **kwargs):
"""Benchmark a function's execution time."""
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
return result, end_time - start_time
# Benchmark data sizes
sizes = [100, 500, 1000, 5000, 10000]
bitfield_times = []
encode_times = []
decode_times = []
for size in sizes:
# Create test data
test_data = np.random.rand(size)
# Benchmark bitfield initialization
_, init_time = benchmark_function(bm.init_4d, x=100, y=100, z=10, t=size//100)
bitfield_times.append(init_time)
# Initialize bitfield for encoding/decoding benchmarks
bitfield = bm.init_4d(x=100, y=100, z=10, t=size//100)
# Benchmark encoding
_, encode_time = benchmark_function(bm.encode_bit, bitfield, test_data)
encode_times.append(encode_time)
# Encode data for decoding benchmark
encoded_bitfield = bm.encode_bit(bitfield, test_data)
# Benchmark decoding
_, decode_time = benchmark_function(bm.decode_bit, encoded_bitfield)
decode_times.append(decode_time)
# Plot the benchmark results
plt.figure(figsize=(10, 6))
plt.plot(sizes, bitfield_times, 'o-', label='Bitfield Initialization')
plt.plot(sizes, encode_times, 's-', label='Data Encoding')
plt.plot(sizes, decode_times, '^-', label='Data Decoding')
plt.xlabel('Data Size')
plt.ylabel('Execution Time (seconds)')
plt.title('Bitmatrix Performance Benchmarks')
plt.legend()
plt.grid(True)
plt.savefig('performance_benchmarks.png')
plt.close()
print("Performance benchmarks complete. Results saved to 'performance_benchmarks.png'")
The Bitmatrix toolkit is designed for high performance, with the following characteristics: