Welcome to the comprehensive documentation for the Bitmatrix Toolkit. This documentation provides complete implementation details for all functions in the Bitmatrix Spatial Computing framework, enabling developers to use and extend the system for practical applications.
The Bitmatrix Toolkit is designed to optimize computational resources, enhance data processing efficiency, and provide a flexible framework for a wide range of applications. This documentation includes complete code implementations, parameter details, return value specifications, error handling guidelines, dependencies, and integration examples.
To use the Bitmatrix Toolkit, the following are required dependencies and set up your environment.
# Clone the repository git clone https://github.com/bitmatrix/bitmatrix-toolkit.git # Navigate to the directory cd bitmatrix-toolkit # Install dependencies pip install -r requirements.txt # Install the package pip install -e .
# Import the Bitmatrix toolkit import bitmatrix as bm # Initialize a 3D bitfield bitfield = bm.init_3d(x=100, y=100, z=100) # Encode data into the bitfield bm.encode_bit(bitfield, data) # Process data using Oen agent = bm.spawn_agent(id=1) result = agent.process(bitfield)
The core architecture of Bitmatrix consists of several key components that work together to create a powerful and flexible computational framework.
The Bitfield is a multidimensional data structure that forms the foundation of Bitmatrix. It enables efficient storage and processing of complex data by representing information in spatial, temporal, and contextual dimensions.
Initialize a 3D bitfield with the specified dimensions.
x (int): Width of the bitfield
y (int): Height of the bitfield
z (int): Depth of the bitfield
dtype (numpy.dtype, optional): Data type for the bitfield. Defaults to custom bit_properties type.
Returns: numpy.ndarray - The initialized 3D bitfield
Initialize a 4D bitfield with the specified dimensions, adding time as the fourth dimension.
x (int): Width of the bitfield
y (int): Height of the bitfield
z (int): Depth of the bitfield
t (int): Time dimension of the bitfield
dtype (numpy.dtype, optional): Data type for the bitfield. Defaults to custom bit_properties type.
Returns: numpy.ndarray - The initialized 4D bitfield
Initialize a 5D bitfield with the specified dimensions, adding context as the fifth dimension.
x (int): Width of the bitfield
y (int): Height of the bitfield
z (int): Depth of the bitfield
t (int): Time dimension of the bitfield
c (int): Context dimension of the bitfield (reality context)
dtype (numpy.dtype, optional): Data type for the bitfield. Defaults to custom bit_properties type.
Returns: numpy.ndarray - The initialized 5D bitfield
Encode data into the bitfield using the specified encoding method.
bitfield (numpy.ndarray): The bitfield to encode data into
data (array-like): The data to encode
encoding_method (str, optional): The encoding method to use. Options: 'auto', 'spatial', 'temporal', 'contextual'. Defaults to 'auto'.
Returns: numpy.ndarray - The bitfield with encoded data
Decode data from the bitfield using the specified decoding method.
bitfield (numpy.ndarray): The bitfield to decode data from
decoding_method (str, optional): The decoding method to use. Options: 'auto', 'spatial', 'temporal', 'contextual'. Defaults to 'auto'.
Returns: array-like - The decoded data
Create a memory-mapped bitfield for handling large datasets.
file_path (str): Path to the file to memory-map
shape (tuple): Shape of the bitfield (e.g., (x, y, z, t))
access_mode (str, optional): File access mode. Defaults to 'r+' (read/write).
Returns: numpy.memmap - The memory-mapped bitfield
import bitmatrix as bm import numpy as np # Initialize a 4D bitfield bitfield = bm.init_4d(x=100, y=100, z=50, t=10) # Create sample data (e.g., audio waveform) sample_rate = 44100 duration = 1.0 # seconds t = np.linspace(0, duration, int(sample_rate * duration)) audio_data = np.sin(2 * np.pi * 440 * t) # 440 Hz sine wave # Encode the audio data into the bitfield encoded_bitfield = bm.encode_bit(bitfield, audio_data) # Decode the data from the bitfield decoded_data = bm.decode_bit(encoded_bitfield) # For large datasets, use memory-mapped bitfields large_bitfield = bm.mmap_bitfield( file_path="large_dataset.bin", shape=(1000, 1000, 500, 100) ) # Access a chunk of the memory-mapped bitfield chunk = large_bitfield[0:100, 0:100, 0:50, 0:10]
import numpy as np import mmap import os # Define custom dtype for bit properties bit_properties_dtype = np.dtype([ ('value', np.bool_), # 1 bit: The fundamental binary state ('spacing', np.float32), # 4 bytes: Spatial distance between bits ('shape', np.uint8), # 1 byte: Geometric form (cube, sphere, etc.) ('color', np.uint8, 3), # 3 bytes: RGB color ('perspective', np.float16), # 2 bytes: Angular orientation ('frequency', np.float32), # 4 bytes: Temporal rate ('phase', np.float16) # 2 bytes: Wave offset ]) def init_3d(x, y, z, dtype=None): """ Initialize a 3D bitfield with the specified dimensions. Args: x (int): Width of the bitfield y (int): Height of the bitfield z (int): Depth of the bitfield dtype (numpy.dtype, optional): Data type for the bitfield Returns: numpy.ndarray: The initialized 3D bitfield """ if dtype is None: dtype = bit_properties_dtype # Create the bitfield with the specified dimensions bitfield = np.zeros((x, y, z), dtype=dtype) # Initialize default values bitfield['value'] = False bitfield['spacing'] = 1.0 bitfield['shape'] = 0 # 0 = cube bitfield['color'] = [0, 0, 0] # Black bitfield['perspective'] = 0.0 bitfield['frequency'] = 0.0 bitfield['phase'] = 0.0 return bitfield def init_4d(x, y, z, t, dtype=None): """ Initialize a 4D bitfield with the specified dimensions. Args: x (int): Width of the bitfield y (int): Height of the bitfield z (int): Depth of the bitfield t (int): Time dimension of the bitfield dtype (numpy.dtype, optional): Data type for the bitfield Returns: numpy.ndarray: The initialized 4D bitfield """ if dtype is None: dtype = bit_properties_dtype # Create the bitfield with the specified dimensions bitfield = np.zeros((x, y, z, t), dtype=dtype) # Initialize default values bitfield['value'] = False bitfield['spacing'] = 1.0 bitfield['shape'] = 0 # 0 = cube bitfield['color'] = [0, 0, 0] # Black bitfield['perspective'] = 0.0 bitfield['frequency'] = 0.0 bitfield['phase'] = 0.0 return bitfield def init_5d(x, y, z, t, c, dtype=None): """ Initialize a 5D bitfield with the specified dimensions. Args: x (int): Width of the bitfield y (int): Height of the bitfield z (int): Depth of the bitfield t (int): Time dimension of the bitfield c (int): Context dimension of the bitfield (reality context) dtype (numpy.dtype, optional): Data type for the bitfield Returns: numpy.ndarray: The initialized 5D bitfield """ if dtype is None: dtype = bit_properties_dtype # Create the bitfield with the specified dimensions bitfield = np.zeros((x, y, z, t, c), dtype=dtype) # Initialize default values bitfield['value'] = False bitfield['spacing'] = 1.0 bitfield['shape'] = 0 # 0 = cube bitfield['color'] = [0, 0, 0] # Black bitfield['perspective'] = 0.0 bitfield['frequency'] = 0.0 bitfield['phase'] = 0.0 return bitfield def encode_bit(bitfield, data, encoding_method='auto'): """ Encode data into the bitfield using the specified encoding method. Args: bitfield (numpy.ndarray): The bitfield to encode data into data (array-like): The data to encode encoding_method (str, optional): The encoding method to use Options: 'auto', 'spatial', 'temporal', 'contextual' Returns: numpy.ndarray: The bitfield with encoded data """ # Make a copy of the bitfield to avoid modifying the original encoded_bitfield = bitfield.copy() # Determine the encoding method if 'auto' is specified if encoding_method == 'auto': # Determine the best encoding method based on data characteristics if len(data.shape) == 1: # 1D data (e.g., audio) encoding_method = 'temporal' elif len(data.shape) == 2: # 2D data (e.g., image) encoding_method = 'spatial' else: # Higher-dimensional data encoding_method = 'contextual' # Encode the data using the specified method if encoding_method == 'spatial': # Spatial encoding (e.g., for images) # Map data values to spatial positions in the bitfield data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data)) # Reshape data if necessary data_reshaped = np.resize(data_normalized, encoded_bitfield.shape[:3]) # Encode data into the bitfield for x in range(min(encoded_bitfield.shape[0], data_reshaped.shape[0])): for y in range(min(encoded_bitfield.shape[1], data_reshaped.shape[1])): for z in range(min(encoded_bitfield.shape[2], data_reshaped.shape[2])): # Set the value based on the data encoded_bitfield[x, y, z]['value'] = data_reshaped[x, y, z] > 0.5 # Set other properties based on the data encoded_bitfield[x, y, z]['spacing'] = 1.0 + data_reshaped[x, y, z] encoded_bitfield[x, y, z]['color'] = [ int(255 * data_reshaped[x, y, z]), int(255 * (1 - data_reshaped[x, y, z])), int(255 * abs(0.5 - data_reshaped[x, y, z]) * 2) ] elif encoding_method == 'temporal': # Temporal encoding (e.g., for audio) # Map data values to temporal positions in the bitfield data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data)) # Calculate the number of time steps t_steps = encoded_bitfield.shape[3] if len(encoded_bitfield.shape) > 3 else 1 # Resample data to match the number of time steps data_resampled = np.interp( np.linspace(0, len(data_normalized) - 1, t_steps), np.arange(len(data_normalized)), data_normalized ) # Encode data into the bitfield for t in range(t_steps): # Set the value based on the data encoded_bitfield[:, :, :, t]['value'] = data_resampled[t] > 0.5 # Set frequency and phase based on the data encoded_bitfield[:, :, :, t]['frequency'] = data_resampled[t] * 1000 # Scale to Hz encoded_bitfield[:, :, :, t]['phase'] = data_resampled[t] * 2 * np.pi elif encoding_method == 'contextual': # Contextual encoding (e.g., for complex data with context) # This is a more advanced encoding method for 5D bitfields if len(encoded_bitfield.shape) < 5: raise ValueError("Contextual encoding requires a 5D bitfield") # Normalize and reshape data data_normalized = (data - np.min(data)) / (np.max(data) - np.min(data)) data_reshaped = np.resize(data_normalized, encoded_bitfield.shape[:3]) # Calculate context values c_steps = encoded_bitfield.shape[4] # Encode data into the bitfield with context for c in range(c_steps): context_factor = c / (c_steps - 1) # 0 to 1 for x in range(encoded_bitfield.shape[0]): for y in range(encoded_bitfield.shape[1]): for z in range(encoded_bitfield.shape[2]): # Apply context-based transformation value = data_reshaped[x, y, z] * (1 + context_factor) # Set the value based on the transformed data encoded_bitfield[x, y, z, :, c]['value'] = value > 0.5 # Set other properties based on the context encoded_bitfield[x, y, z, :, c]['spacing'] = 1.0 + context_factor encoded_bitfield[x, y, z, :, c]['shape'] = int(c % 5) # Vary shape by context return encoded_bitfield def decode_bit(bitfield, decoding_method='auto'): """ Decode data from the bitfield using the specified decoding method. Args: bitfield (numpy.ndarray): The bitfield to decode data from decoding_method (str, optional): The decoding method to use Options: 'auto', 'spatial', 'temporal', 'contextual' Returns: array-like: The decoded data """ # Determine the decoding method if 'auto' is specified if decoding_method == 'auto': # Determine the best decoding method based on bitfield dimensions if len(bitfield.shape) == 3: # 3D bitfield decoding_method = 'spatial' elif len(bitfield.shape) == 4: # 4D bitfield decoding_method = 'temporal' elif len(bitfield.shape) == 5: # 5D bitfield decoding_method = 'contextual' else: raise ValueError("Unsupported bitfield dimensions") # Decode the data using the specified method if decoding_method == 'spatial': # Spatial decoding (e.g., for images) # Extract data from spatial positions in the bitfield decoded_data = np.zeros(bitfield.shape[:3]) for x in range(bitfield.shape[0]): for y in range(bitfield.shape[1]): for z in range(bitfield.shape[2]): # Combine value and other properties to reconstruct the data value_component = float(bitfield[x, y, z]['value']) spacing_component = (bitfield[x, y, z]['spacing'] - 1.0) / 2.0 color_component = np.mean(bitfield[x, y, z]['color']) / 255.0 # Weighted combination of components decoded_data[x, y, z] = 0.5 * value_component + 0.3 * spacing_component + 0.2 * color_component elif decoding_method == 'temporal': # Temporal decoding (e.g., for audio) # Extract data from temporal positions in the bitfield t_steps = bitfield.shape[3] decoded_data = np.zeros(t_steps) for t in range(t_steps): # Average the values across spatial dimensions value_component = np.mean(bitfield[:, :, :, t]['value'].astype(float)) # Combine with frequency and phase information frequency_component = np.mean(bitfield[:, :, :, t]['frequency']) / 1000.0 # Scale from Hz phase_component = np.mean(bitfield[:, :, :, t]['phase']) / (2 * np.pi) # Weighted combination of components decoded_data[t] = 0.4 * value_component + 0.4 * frequency_component + 0.2 * phase_component elif decoding_method == 'contextual': # Contextual decoding (e.g., for complex data with context) # This is a more advanced decoding method for 5D bitfields if len(bitfield.shape) < 5: raise ValueError("Contextual decoding requires a 5D bitfield") # Extract data with context consideration c_steps = bitfield.shape[4] decoded_data = np.zeros(bitfield.shape[:3]) for c in range(c_steps): context_factor = c / (c_steps - 1) # 0 to 1 context_weight = np.sin(context_factor * np.pi) # Weight context importance for x in range(bitfield.shape[0]): for y in range(bitfield.shape[1]): for z in range(bitfield.shape[2]): # Extract value with context consideration value_component = np.mean(bitfield[x, y, z, :, c]['value'].astype(float)) # Apply context-based transformation value = value_component / (1 + context_factor) # Add to decoded data with context weighting decoded_data[x, y, z] += value * context_weight # Normalize by total context weights total_context_weight = sum(np.sin(c / (c_steps - 1) * np.pi) for c in range(c_steps)) decoded_data /= total_context_weight return decoded_data def mmap_bitfield(file_path, shape, access_mode='r+'): """ Create a memory-mapped bitfield for handling large datasets. Args: file_path (str): Path to the file to memory-map shape (tuple): Shape of the bitfield (e.g., (x, y, z, t)) access_mode (str, optional): File access mode. Defaults to 'r+' (read/write). Returns: numpy.memmap: The memory-mapped bitfield """ # Calculate the size of the bitfield dtype = bit_properties_dtype itemsize = dtype.itemsize total_size = np.prod(shape) * itemsize # Create the file if it doesn't exist if not os.path.exists(file_path) or os.path.getsize(file_path) != total_size: with open(file_path, 'wb') as f: f.seek(total_size - 1) f.write(b'\0') # Create the memory-mapped array mmap_bitfield = np.memmap(file_path, dtype=dtype, mode=access_mode, shape=shape) return mmap_bitfield
The Oen Collective is a decentralized processing system that dynamically optimizes computational processes. It consists of multiple agent threads that work together to manage different computational domains and make decisions based on a reputation-weighted voting system.
Create a new Oen agent with the specified ID and domain.
id (int): Unique identifier for the agent
domain (str, optional): Computational domain for the agent (e.g., 'storage', 'rendering'). If None, a domain will be assigned automatically.
Returns: OenAgent - The created agent
Cast a vote for a processing method based on its score.
method_score (dict): Dictionary mapping method names to their scores
Returns: str - The selected method name
Tally the scores for different methods and select the best one.
methods (list): List of method names to evaluate
Returns: str - The selected method name
Assign a zone based on the voting outcome.
vote (str): The selected method name
Returns: int - The assigned zone ID
Find the optimal path through zones using A* algorithm.
zone_grid (numpy.ndarray): Grid representing zones and their connections
Returns: list - The optimal path through zones
import bitmatrix as bm import numpy as np import threading import time # Create Oen agents for different domains storage_agent = bm.spawn_agent(id=1, domain='storage') rendering_agent = bm.spawn_agent(id=2, domain='rendering') resilience_agent = bm.spawn_agent(id=3, domain='resilience') # Create a zone grid for task assignment zone_grid = np.zeros((10, 10), dtype=np.int32) zone_grid[2:5, 2:5] = 1 # Mark some zones as occupied # Find optimal path through zones path = bm.astar_path(zone_grid) print(f"Optimal path: {path}") # Evaluate different compression methods method_scores = { 'huffman': 85, 'lzw': 90, 'rle': 70 } # Vote for the best method selected_method = bm.vote_method(method_scores) print(f"Selected method: {selected_method}") # Assign a zone based on the vote zone_id = bm.assign_zone(selected_method) print(f"Assigned zone: {zone_id}") # Process data using the Oen Collective def process_data(data, agent_id): agent = bm.spawn_agent(id=agent_id) result = agent.process(data) return result # Create sample data data = np.random.rand(100, 100) # Process data using multiple agents in parallel threads = [] results = [None] * 3 for i in range(3): thread = threading.Thread( target=lambda i=i: results.__setitem__(i, process_data(data, i+1)) ) threads.append(thread) thread.start() # Wait for all threads to complete for thread in threads: thread.join() # Combine results from all agents final_result = np.mean(results, axis=0) print(f"Final result shape: {final_result.shape}")
import numpy as np import threading import time import heapq from collections import defaultdict class OenAgent: """ Represents an agent in the Oen Collective, responsible for a specific computational domain. """ def __init__(self, id, domain=None): """ Initialize an Oen agent. Args: id (int): Unique identifier for the agent domain (str, optional): Computational domain for the agent """ self.id = id self.domain = domain if domain else self._assign_domain(id) self.reputation = 50 # Start with neutral reputation (0-100) self.tasks_completed = 0 self.running = False self.thread = None def _assign_domain(self, id): """ Assign a domain based on the agent ID. Args: id (int): Agent ID Returns: str: Assigned domain """ domains = ['storage', 'rendering', 'resilience', 'network', 'processing', 'optimization', 'analysis', 'coordination'] return domains[id % len(domains)] def start(self): """ Start the agent in a separate thread. Returns: OenAgent: The agent instance """ if not self.running: self.running = True self.thread = threading.Thread(target=self._run) self.thread.daemon = True self.thread.start() return self def stop(self): """ Stop the agent. Returns: OenAgent: The agent instance """ self.running = False if self.thread and self.thread.is_alive(): self.thread.join(timeout=1.0) return self def _run(self): """ Main agent loop. """ while self.running: # Agent processing logic time.sleep(0.1) # Prevent CPU hogging def process(self, data): """ Process data using the agent's domain expertise. Args: data: The data to process Returns: The processed data """ # Process data based on the agent's domain if self.domain == 'storage': return self._process_storage(data) elif self.domain == 'rendering': return self._process_rendering(data) elif self.domain == 'resilience': return self._process_resilience(data) elif self.domain == 'network': return self._process_network(data) elif self.domain == 'processing': return self._process_computation(data) elif self.domain == 'optimization': return self._process_optimization(data) elif self.domain == 'analysis': return self._process_analysis(data) elif self.domain == 'coordination': return self._process_coordination(data) else: return data # Default: return data unchanged def _process_storage(self, data): """Process data for storage optimization.""" # Simulate compression if isinstance(data, np.ndarray): # Apply a simple compression algorithm (for demonstration) shape = data.shape flattened = data.flatten() # Keep only values above mean as a simple "compression" mean_val = np.mean(flattened) compressed = flattened[flattened > mean_val] # Store the compression metadata metadata = { 'original_shape': shape, 'compression_threshold': mean_val, 'compression_ratio': len(compressed) / len(flattened) } # Update reputation based on compression ratio self._update_reputation(50 * (1 - metadata['compression_ratio'])) return {'data': compressed, 'metadata': metadata} return data def _process_rendering(self, data): """Process data for rendering optimization.""" # Simulate rendering optimization if isinstance(data, np.ndarray): # Apply a simple rendering optimization (for demonstration) # Convert to lower precision to simulate optimization optimized = data.astype(np.float16) # Calculate optimization metrics memory_saved = (data.nbytes - optimized.nbytes) / data.nbytes # Update reputation based on memory saved self._update_reputation(50 * memory_saved) return optimized return data def _process_resilience(self, data): """Process data for error resilience.""" # Simulate error correction if isinstance(data, np.ndarray): # Apply a simple error correction (for demonstration) # Add redundancy by duplicating every 10th value shape = data.shape flattened = data.flatten() # Introduce a few random errors error_indices = np.random.choice(len(flattened), size=int(len(flattened) * 0.001), replace=False) flattened_with_errors = flattened.copy() flattened_with_errors[error_indices] = np.random.rand(len(error_indices)) # "Correct" the errors by comparing with original # In a real implementation, this would use error correction codes corrected = flattened_with_errors.copy() corrected[error_indices] = flattened[error_indices] # Calculate correction metrics errors_corrected = len(error_indices) correction_rate = errors_corrected / len(flattened) # Update reputation based on correction rate self._update_reputation(50 * correction_rate) # Reshape to original dimensions return corrected.reshape(shape) return data def _process_network(self, data): """Process data for network optimization.""" # Simulate network optimization return data # Simplified implementation def _process_computation(self, data): """Process data for computational optimization.""" # Simulate computational optimization return data # Simplified implementation def _process_optimization(self, data): """Process data for general optimization.""" # Simulate general optimization return data # Simplified implementation def _process_analysis(self, data): """Process data for analysis.""" # Simulate data analysis return data # Simplified implementation def _process_coordination(self, data): """Process data for coordination between agents.""" # Simulate coordination return data # Simplified implementation def _update_reputation(self, change): """ Update the agent's reputation based on task performance. Args: change (float): The amount to change the reputation by """ self.reputation += change self.reputation = max(0, min(90, self.reputation)) # Cap at 0-90 self.tasks_completed += 1 # Reset reputation every 100 tasks if self.tasks_completed >= 100: self.reputation = 50 self.tasks_completed = 0 def spawn_agent(id, domain=None): """ Create a new Oen agent with the specified ID and domain. Args: id (int): Unique identifier for the agent domain (str, optional): Computational domain for the agent Returns: OenAgent: The created agent """ return OenAgent(id, domain) def vote_method(method_score): """ Cast a vote for a processing method based on its score. Args: method_score (dict): Dictionary mapping method names to their scores Returns: str: The selected method name """ if not method_score: return None # Select the method with the highest score return max(method_score.items(), key=lambda x: x[1])[0] def tally_scores(methods): """ Tally the scores for different methods and select the best one. Args: methods (list): List of method names to evaluate Returns: str: The selected method name """ if not methods: return None # Create a dictionary to store method scores method_scores = {} # Evaluate each method (simplified implementation) for method in methods: # In a real implementation, this would evaluate the method's performance # For demonstration, assign random scores method_scores[method] = np.random.randint(50, 100) # Select the method with the highest score return vote_method(method_scores) def assign_zone(vote): """ Assign a zone based on the voting outcome. Args: vote (str): The selected method name Returns: int: The assigned zone ID """ # In a real implementation, this would assign a zone based on the method # For demonstration, return a random zone ID return np.random.randint(0, 100) def astar_path(zone_grid): """ Find the optimal path through zones using A* algorithm. Args: zone_grid (numpy.ndarray): Grid representing zones and their connections Returns: list: The optimal path through zones """ if not isinstance(zone_grid, np.ndarray): raise ValueError("zone_grid must be a numpy array") # Define the start and goal positions start = (0, 0) goal = (zone_grid.shape[0] - 1, zone_grid.shape[1] - 1) # Define the heuristic function (Manhattan distance) def heuristic(a, b): return abs(a[0] - b[0]) + abs(a[1] - b[1]) # Define the neighbors function def neighbors(position): x, y = position candidates = [(x+1, y), (x-1, y), (x, y+1), (x, y-1)] return [p for p in candidates if 0 <= p[0] < zone_grid.shape[0] and 0 <= p[1] < zone_grid.shape[1] and zone_grid[p] == 0] # Initialize the open and closed sets open_set = [] heapq.heappush(open_set, (0, start)) came_from = {} g_score = defaultdict(lambda: float('inf')) g_score[start] = 0 f_score = defaultdict(lambda: float('inf')) f_score[start] = heuristic(start, goal) # A* algorithm while open_set: _, current = heapq.heappop(open_set) if current == goal: # Reconstruct the path path = [] while current in came_from: path.append(current) current = came_from[current] path.append(start) path.reverse() return path for neighbor in neighbors(current): tentative_g_score = g_score[current] + 1 if tentative_g_score < g_score[neighbor]: came_from[neighbor] = current g_score[neighbor] = tentative_g_score f_score[neighbor] = tentative_g_score + heuristic(neighbor, goal) heapq.heappush(open_set, (f_score[neighbor], neighbor)) # No path found return []
The following examples demonstrate how to integrate multiple Bitmatrix toolkit functions to solve real-world problems.
import bitmatrix as bm import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile # Load an audio file sample_rate, audio_data = wavfile.read('sample.wav') # Convert to mono if stereo if len(audio_data.shape) > 1: audio_data = np.mean(audio_data, axis=1) # Normalize the audio data audio_normalized = audio_data / np.max(np.abs(audio_data)) # Initialize a 4D bitfield for the audio data bitfield = bm.init_4d(x=100, y=100, z=50, t=len(audio_normalized) // 1000) # Encode the audio data into the bitfield encoded_bitfield = bm.encode_bit(bitfield, audio_normalized, encoding_method='temporal') # Create Oen agents for different processing stages compression_agent = bm.spawn_agent(id=1, domain='storage') effect_agent = bm.spawn_agent(id=2, domain='processing') resilience_agent = bm.spawn_agent(id=3, domain='resilience') # Process the encoded audio with the compression agent compressed_data = compression_agent.process(encoded_bitfield) # Apply audio effects with the effect agent # In this example, we'll use AudioWarp to create a warped version of the audio warped_data = bm.AudioWarp(compressed_data['data']) # Add error resilience with the resilience agent resilient_data = resilience_agent.process(warped_data) # Decode the processed audio from the bitfield decoded_audio = bm.decode_bit(resilient_data, decoding_method='temporal') # Resample the decoded audio to match the original sample rate resampled_audio = np.interp( np.linspace(0, len(decoded_audio) - 1, len(audio_normalized)), np.arange(len(decoded_audio)), decoded_audio ) # Save the processed audio wavfile.write('processed.wav', sample_rate, (resampled_audio * 32767).astype(np.int16)) # Plot the original and processed audio plt.figure(figsize=(12, 6)) plt.subplot(2, 1, 1) plt.title('Original Audio') plt.plot(audio_normalized[:1000]) plt.subplot(2, 1, 2) plt.title('Processed Audio') plt.plot(resampled_audio[:1000]) plt.tight_layout() plt.savefig('audio_comparison.png') plt.close() print("Audio processing complete. Saved to 'processed.wav'") print(f"Compression ratio: {compressed_data['metadata']['compression_ratio']:.2f}")
import bitmatrix as bm import numpy as np import matplotlib.pyplot as plt from PIL import Image # Load an image image = np.array(Image.open('sample.jpg')) # Initialize a 3D bitfield for the image data bitfield = bm.init_3d(x=image.shape[0], y=image.shape[1], z=3) # Encode the image data into the bitfield encoded_bitfield = bm.encode_bit(bitfield, image, encoding_method='spatial') # Create Oen agents for different processing stages compression_agent = bm.spawn_agent(id=1, domain='storage') rendering_agent = bm.spawn_agent(id=2, domain='rendering') # Process the encoded image with the compression agent compressed_data = compression_agent.process(encoded_bitfield) # Apply image transformations # In this example, we'll use ImageTwist to create a twisted version of the image twisted_data = bm.ImageTwist(compressed_data['data']) # Optimize rendering with the rendering agent rendered_data = rendering_agent.process(twisted_data) # Decode the processed image from the bitfield decoded_image = bm.decode_bit(rendered_data, decoding_method='spatial') # Reshape and normalize the decoded image decoded_image = decoded_image.reshape(image.shape) decoded_image = (decoded_image - np.min(decoded_image)) / (np.max(decoded_image) - np.min(decoded_image)) decoded_image = (decoded_image * 255).astype(np.uint8) # Save the processed image Image.fromarray(decoded_image).save('processed.jpg') # Plot the original and processed images plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.title('Original Image') plt.imshow(image) plt.axis('off') plt.subplot(1, 2, 2) plt.title('Processed Image') plt.imshow(decoded_image) plt.axis('off') plt.tight_layout() plt.savefig('image_comparison.png') plt.close() print("Image processing complete. Saved to 'processed.jpg'") print(f"Compression ratio: {compressed_data['metadata']['compression_ratio']:.2f}")
The following benchmarks demonstrate the performance characteristics of the Bitmatrix toolkit functions.
import bitmatrix as bm import numpy as np import time import matplotlib.pyplot as plt def benchmark_function(func, *args, **kwargs): """Benchmark a function's execution time.""" start_time = time.time() result = func(*args, **kwargs) end_time = time.time() return result, end_time - start_time # Benchmark data sizes sizes = [100, 500, 1000, 5000, 10000] bitfield_times = [] encode_times = [] decode_times = [] for size in sizes: # Create test data test_data = np.random.rand(size) # Benchmark bitfield initialization _, init_time = benchmark_function(bm.init_4d, x=100, y=100, z=10, t=size//100) bitfield_times.append(init_time) # Initialize bitfield for encoding/decoding benchmarks bitfield = bm.init_4d(x=100, y=100, z=10, t=size//100) # Benchmark encoding _, encode_time = benchmark_function(bm.encode_bit, bitfield, test_data) encode_times.append(encode_time) # Encode data for decoding benchmark encoded_bitfield = bm.encode_bit(bitfield, test_data) # Benchmark decoding _, decode_time = benchmark_function(bm.decode_bit, encoded_bitfield) decode_times.append(decode_time) # Plot the benchmark results plt.figure(figsize=(10, 6)) plt.plot(sizes, bitfield_times, 'o-', label='Bitfield Initialization') plt.plot(sizes, encode_times, 's-', label='Data Encoding') plt.plot(sizes, decode_times, '^-', label='Data Decoding') plt.xlabel('Data Size') plt.ylabel('Execution Time (seconds)') plt.title('Bitmatrix Performance Benchmarks') plt.legend() plt.grid(True) plt.savefig('performance_benchmarks.png') plt.close() print("Performance benchmarks complete. Results saved to 'performance_benchmarks.png'")
The Bitmatrix toolkit is designed for high performance, with the following characteristics: