BitMatrix Spatial Computing

Implementation Examples

Implementation Examples

# BitMatrix Spatial Computing: Implementation Examples

*Developed by Euan Craig (DigitalEuan.com) New Zealand, 2025*
*With assistance from GPT, Gemini, Grok, and Manus*

This document provides practical implementation examples and pseudocode for key components of the BitMatrix Spatial Computing framework. These examples demonstrate how the theoretical concepts and mathematical foundations can be applied in real-world applications.

## 1. Core BitMatrix Implementation

### 1.1 BitField3D Class Implementation

```python
class BitField3D:
    """
    Implementation of a 3D bitfield for the BitMatrix architecture.
    """
    def __init__(self, x_dim, y_dim, z_dim):
        """Initialize a 3D bitfield with the specified dimensions."""
        self.x_dim = x_dim
        self.y_dim = y_dim
        self.z_dim = z_dim
        
        # Initialize bit storage (using a 3D numpy array for efficiency)
        self.bits = np.zeros((x_dim, y_dim, z_dim), dtype=np.uint8)
        
        # Initialize property storage (using a dictionary for flexibility)
        self.properties = {}
    
    def getBit(self, x, y, z):
        """Get the bit value at the specified coordinates."""
        if not (0 <= x < self.x_dim and 0 <= y < self.y_dim and 0 <= z < self.z_dim):
            raise IndexError(f"Coordinates ({x}, {y}, {z}) out of bounds")
        
        return self.bits[x, y, z]
    
    def setBit(self, x, y, z, value):
        """Set the bit value at the specified coordinates."""
        if not (0 <= x < self.x_dim and 0 <= y < self.y_dim and 0 <= z < self.z_dim):
            raise IndexError(f"Coordinates ({x}, {y}, {z}) out of bounds")
        
        self.bits[x, y, z] = value
    
    def setProperty(self, x, y, z, property_name, property_value):
        """Set a property for the bit at the specified coordinates."""
        if not (0 <= x < self.x_dim and 0 <= y < self.y_dim and 0 <= z < self.z_dim):
            raise IndexError(f"Coordinates ({x}, {y}, {z}) out of bounds")
        
        # Create position key
        pos_key = (x, y, z)
        
        # Initialize property dictionary for this position if it doesn't exist
        if pos_key not in self.properties:
            self.properties[pos_key] = {}
        
        # Set the property
        self.properties[pos_key][property_name] = property_value
    
    def getProperty(self, x, y, z, property_name):
        """Get a property for the bit at the specified coordinates."""
        if not (0 <= x < self.x_dim and 0 <= y < self.y_dim and 0 <= z < self.z_dim):
            raise IndexError(f"Coordinates ({x}, {y}, {z}) out of bounds")
        
        # Create position key
        pos_key = (x, y, z)
        
        # Check if property exists
        if pos_key not in self.properties or property_name not in self.properties[pos_key]:
            raise KeyError(f"Property '{property_name}' not found at coordinates ({x}, {y}, {z})")
        
        return self.properties[pos_key][property_name]
    
    def getPropertyNames(self, x, y, z):
        """Get all property names for the bit at the specified coordinates."""
        if not (0 <= x < self.x_dim and 0 <= y < self.y_dim and 0 <= z < self.z_dim):
            raise IndexError(f"Coordinates ({x}, {y}, {z}) out of bounds")
        
        # Create position key
        pos_key = (x, y, z)
        
        # Return property names or empty list if none exist
        if pos_key in self.properties:
            return list(self.properties[pos_key].keys())
        else:
            return []
    
    def getDimensions(self):
        """Get the dimensions of the bitfield."""
        return (self.x_dim, self.y_dim, self.z_dim)
    
    def copy(self):
        """Create a deep copy of this bitfield."""
        new_bitfield = BitField3D(self.x_dim, self.y_dim, self.z_dim)
        new_bitfield.bits = np.copy(self.bits)
        
        # Deep copy properties
        for pos_key, props in self.properties.items():
            new_bitfield.properties[pos_key] = props.copy()
        
        return new_bitfield
```

### 1.2 BitField4D Class Implementation

```python
class BitField4D:
    """
    Implementation of a 4D bitfield for the BitMatrix architecture.
    """
    def __init__(self, x_dim, y_dim, z_dim, t_dim):
        """Initialize a 4D bitfield with the specified dimensions."""
        self.x_dim = x_dim
        self.y_dim = y_dim
        self.z_dim = z_dim
        self.t_dim = t_dim
        
        # Initialize bit storage (using a 4D numpy array for efficiency)
        self.bits = np.zeros((x_dim, y_dim, z_dim, t_dim), dtype=np.uint8)
        
        # Initialize property storage (using a dictionary for flexibility)
        self.properties = {}
    
    def getBit(self, x, y, z, t):
        """Get the bit value at the specified coordinates."""
        if not (0 <= x < self.x_dim and 0 <= y < self.y_dim and
                0 <= z < self.z_dim and 0 <= t < self.t_dim):
            raise IndexError(f"Coordinates ({x}, {y}, {z}, {t}) out of bounds")
        
        return self.bits[x, y, z, t]
    
    def setBit(self, x, y, z, t, value):
        """Set the bit value at the specified coordinates."""
        if not (0 <= x < self.x_dim and 0 <= y < self.y_dim and
                0 <= z < self.z_dim and 0 <= t < self.t_dim):
            raise IndexError(f"Coordinates ({x}, {y}, {z}, {t}) out of bounds")
        
        self.bits[x, y, z, t] = value
    
    def setProperty(self, x, y, z, t, property_name, property_value):
        """Set a property for the bit at the specified coordinates."""
        if not (0 <= x < self.x_dim and 0 <= y < self.y_dim and
                0 <= z < self.z_dim and 0 <= t < self.t_dim):
            raise IndexError(f"Coordinates ({x}, {y}, {z}, {t}) out of bounds")
        
        # Create position key
        pos_key = (x, y, z, t)
        
        # Initialize property dictionary for this position if it doesn't exist
        if pos_key not in self.properties:
            self.properties[pos_key] = {}
        
        # Set the property
        self.properties[pos_key][property_name] = property_value
    
    def getProperty(self, x, y, z, t, property_name):
        """Get a property for the bit at the specified coordinates."""
        if not (0 <= x < self.x_dim and 0 <= y < self.y_dim and
                0 <= z < self.z_dim and 0 <= t < self.t_dim):
            raise IndexError(f"Coordinates ({x}, {y}, {z}, {t}) out of bounds")
        
        # Create position key
        pos_key = (x, y, z, t)
        
        # Check if property exists
        if pos_key not in self.properties or property_name not in self.properties[pos_key]:
            raise KeyError(f"Property '{property_name}' not found at coordinates ({x}, {y}, {z}, {t})")
        
        return self.properties[pos_key][property_name]
    
    def getPropertyNames(self, x, y, z, t):
        """Get all property names for the bit at the specified coordinates."""
        if not (0 <= x < self.x_dim and 0 <= y < self.y_dim and
                0 <= z < self.z_dim and 0 <= t < self.t_dim):
            raise IndexError(f"Coordinates ({x}, {y}, {z}, {t}) out of bounds")
        
        # Create position key
        pos_key = (x, y, z, t)
        
        # Return property names or empty list if none exist
        if pos_key in self.properties:
            return list(self.properties[pos_key].keys())
        else:
            return []
    
    def getDimensions(self):
        """Get the dimensions of the bitfield."""
        return (self.x_dim, self.y_dim, self.z_dim, self.t_dim)
    
    def copy(self):
        """Create a deep copy of this bitfield."""
        new_bitfield = BitField4D(self.x_dim, self.y_dim, self.z_dim, self.t_dim)
        new_bitfield.bits = np.copy(self.bits)
        
        # Deep copy properties
        for pos_key, props in self.properties.items():
            new_bitfield.properties[pos_key] = props.copy()
        
        return new_bitfield
```

## 2. Spatial Operations Implementation

### 2.1 Rotation Implementation

```python
def rotate3D(bitfield, axis, angle_degrees):
    """
    Rotate a 3D bitfield around the specified axis.
    
    Parameters:
    bitfield (BitField3D): Bitfield to rotate
    axis (str): Rotation axis ('x', 'y', or 'z')
    angle_degrees (float): Rotation angle in degrees
    
    Returns:
    BitField3D: Rotated bitfield
    """
    # Convert angle to radians
    angle_radians = np.radians(angle_degrees)
    
    # Get dimensions
    x_dim, y_dim, z_dim = bitfield.getDimensions()
    
    # Create rotation matrix
    if axis.lower() == 'x':
        rotation_matrix = np.array([
            [1, 0, 0],
            [0, np.cos(angle_radians), -np.sin(angle_radians)],
            [0, np.sin(angle_radians), np.cos(angle_radians)]
        ])
    elif axis.lower() == 'y':
        rotation_matrix = np.array([
            [np.cos(angle_radians), 0, np.sin(angle_radians)],
            [0, 1, 0],
            [-np.sin(angle_radians), 0, np.cos(angle_radians)]
        ])
    elif axis.lower() == 'z':
        rotation_matrix = np.array([
            [np.cos(angle_radians), -np.sin(angle_radians), 0],
            [np.sin(angle_radians), np.cos(angle_radians), 0],
            [0, 0, 1]
        ])
    else:
        raise ValueError(f"Invalid rotation axis: {axis}")
    
    # Create result bitfield
    result_bitfield = BitField3D(x_dim, y_dim, z_dim)
    
    # Calculate center of rotation
    center_x = (x_dim - 1) / 2
    center_y = (y_dim - 1) / 2
    center_z = (z_dim - 1) / 2
    
    # Apply rotation to each bit
    for z in range(z_dim):
        for y in range(y_dim):
            for x in range(x_dim):
                # Calculate coordinates relative to center
                rel_x = x - center_x
                rel_y = y - center_y
                rel_z = z - center_z
                
                # Apply rotation matrix
                rotated_coords = np.dot(rotation_matrix, np.array([rel_x, rel_y, rel_z]))
                
                # Convert back to absolute coordinates
                rot_x = int(round(rotated_coords[0] + center_x))
                rot_y = int(round(rotated_coords[1] + center_y))
                rot_z = int(round(rotated_coords[2] + center_z))
                
                # Check if rotated coordinates are within bounds
                if (0 <= rot_x < x_dim and 0 <= rot_y < y_dim and 0 <= rot_z < z_dim):
                    # Copy bit value from original position to rotated position
                    result_bitfield.setBit(rot_x, rot_y, rot_z, bitfield.getBit(x, y, z))
                    
                    # Copy properties
                    for prop_name in bitfield.getPropertyNames(x, y, z):
                        prop_value = bitfield.getProperty(x, y, z, prop_name)
                        result_bitfield.setProperty(rot_x, rot_y, rot_z, prop_name, prop_value)
    
    return result_bitfield
```

### 2.2 Block Operations Implementation

```python
def createBlock(dimensions, value=0):
    """
    Create a block (bitfield) with the specified dimensions and initial value.
    
    Parameters:
    dimensions (tuple): Dimensions of the block (x_dim, y_dim, z_dim)
    value (int): Initial value for all bits (0 or 1)
    
    Returns:
    BitFieldND: Created block
    """
    if len(dimensions) == 3:
        x_dim, y_dim, z_dim = dimensions
        block = BitField3D(x_dim, y_dim, z_dim)
        
        # Set all bits to the specified value
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    block.setBit(x, y, z, value)
    
    elif len(dimensions) == 4:
        x_dim, y_dim, z_dim, t_dim = dimensions
        block = BitField4D(x_dim, y_dim, z_dim, t_dim)
        
        # Set all bits to the specified value
        for t in range(t_dim):
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        block.setBit(x, y, z, t, value)
    
    else:
        raise ValueError("Dimensions must specify a 3D or 4D block")
    
    return block

def insertBlock(target_bitfield, block, position):
    """
    Insert a block into a target bitfield at the specified position.
    
    Parameters:
    target_bitfield (BitFieldND): Target bitfield to insert into
    block (BitFieldND): Block to insert
    position (tuple): Position to insert the block at
    
    Returns:
    BitFieldND: Modified target bitfield
    """
    target_dimensions = target_bitfield.getDimensions()
    block_dimensions = block.getDimensions()
    
    # Validate dimensionality match
    if len(target_dimensions) != len(block_dimensions):
        raise ValueError("Target bitfield and block must have the same dimensionality")
    
    # Validate position
    if len(position) != len(target_dimensions):
        raise ValueError("Position must have the same dimensionality as the target bitfield")
    
    # Create a copy of the target bitfield
    result_bitfield = target_bitfield.copy()
    
    # Insert block
    if len(target_dimensions) == 3:
        target_x_dim, target_y_dim, target_z_dim = target_dimensions
        block_x_dim, block_y_dim, block_z_dim = block_dimensions
        pos_x, pos_y, pos_z = position
        
        # Check if block fits within target
        if (pos_x + block_x_dim > target_x_dim or
            pos_y + block_y_dim > target_y_dim or
            pos_z + block_z_dim > target_z_dim):
            raise ValueError("Block does not fit within target bitfield at the specified position")
        
        # Copy block bits and properties to target
        for z in range(block_z_dim):
            for y in range(block_y_dim):
                for x in range(block_x_dim):
                    # Calculate target position
                    target_x = pos_x + x
                    target_y = pos_y + y
                    target_z = pos_z + z
                    
                    # Copy bit
                    result_bitfield.setBit(target_x, target_y, target_z, block.getBit(x, y, z))
                    
                    # Copy properties
                    for prop_name in block.getPropertyNames(x, y, z):
                        prop_value = block.getProperty(x, y, z, prop_name)
                        result_bitfield.setProperty(target_x, target_y, target_z, prop_name, prop_value)
    
    elif len(target_dimensions) == 4:
        target_x_dim, target_y_dim, target_z_dim, target_t_dim = target_dimensions
        block_x_dim, block_y_dim, block_z_dim, block_t_dim = block_dimensions
        pos_x, pos_y, pos_z, pos_t = position
        
        # Check if block fits within target
        if (pos_x + block_x_dim > target_x_dim or
            pos_y + block_y_dim > target_y_dim or
            pos_z + block_z_dim > target_z_dim or
            pos_t + block_t_dim > target_t_dim):
            raise ValueError("Block does not fit within target bitfield at the specified position")
        
        # Copy block bits and properties to target
        for t in range(block_t_dim):
            for z in range(block_z_dim):
                for y in range(block_y_dim):
                    for x in range(block_x_dim):
                        # Calculate target position
                        target_x = pos_x + x
                        target_y = pos_y + y
                        target_z = pos_z + z
                        target_t = pos_t + t
                        
                        # Copy bit
                        result_bitfield.setBit(target_x, target_y, target_z, target_t,
                                             block.getBit(x, y, z, t))
                        
                        # Copy properties
                        for prop_name in block.getPropertyNames(x, y, z, t):
                            prop_value = block.getProperty(x, y, z, t, prop_name)
                            result_bitfield.setProperty(target_x, target_y, target_z, target_t,
                                                      prop_name, prop_value)
    
    return result_bitfield
```

## 3. Temporal Operations Implementation

### 3.1 Wave Propagation Implementation

```python
def propagateWave(bitfield, num_steps, speed=0.5, damping=0.05):
    """
    Propagate a wave through a 3D bitfield for a specified number of time steps.
    
    Parameters:
    bitfield (BitField3D): Initial bitfield state
    num_steps (int): Number of time steps to simulate
    speed (float): Wave propagation speed (0.0 to 1.0)
    damping (float): Damping factor (0.0 to 1.0)
    
    Returns:
    BitField4D: 4D bitfield containing the wave propagation over time
    """
    # Get dimensions
    x_dim, y_dim, z_dim = bitfield.getDimensions()
    
    # Create 4D bitfield to store the wave propagation over time
    result_bitfield = BitField4D(x_dim, y_dim, z_dim, num_steps + 1)
    
    # Initialize arrays for current, previous, and next states
    current_state = np.zeros((x_dim, y_dim, z_dim))
    previous_state = np.zeros((x_dim, y_dim, z_dim))
    
    # Copy initial state from input bitfield
    for z in range(z_dim):
        for y in range(y_dim):
            for x in range(x_dim):
                current_state[x, y, z] = bitfield.getBit(x, y, z)
                result_bitfield.setBit(x, y, z, 0, bitfield.getBit(x, y, z))
    
    # Define discrete Laplacian operator
    def laplacian(state):
        laplacian_state = np.zeros_like(state)
        
        # Apply 3D discrete Laplacian operator
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    # Count neighbors (6-connected)
                    neighbors_sum = 0
                    neighbor_count = 0
                    
                    # Check each neighbor
                    for dx, dy, dz in [(1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1)]:
                        nx, ny, nz = x + dx, y + dy, z + dz
                        
                        # Check bounds
                        if 0 <= nx < x_dim and 0 <= ny < y_dim and 0 <= nz < z_dim:
                            neighbors_sum += state[nx, ny, nz]
                            neighbor_count += 1
                    
                    # Calculate Laplacian (average of neighbors minus center)
                    if neighbor_count > 0:
                        laplacian_state[x, y, z] = neighbors_sum / neighbor_count - state[x, y, z]
        
        return laplacian_state
    
    # Simulate wave propagation for each time step
    for t in range(1, num_steps + 1):
        # Calculate next state using discrete wave equation
        # next = 2*current - previous + speed^2 * laplacian(current)
        next_state = (2 * current_state - previous_state +
                      speed**2 * laplacian(current_state))
        
        # Apply damping
        next_state = next_state * (1 - damping)
        
        # Store result in 4D bitfield (threshold at 0.5)
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    # Threshold continuous value to binary
                    bit_value = 1 if next_state[x, y, z] >= 0.5 else 0
                    result_bitfield.setBit(x, y, z, t, bit_value)
                    
                    # Store actual wave amplitude as property
                    result_bitfield.setProperty(x, y, z, t, 'amplitude', float(next_state[x, y, z]))
        
        # Update states for next iteration
        previous_state = current_state.copy()
        current_state = next_state.copy()
    
    return result_bitfield
```

### 3.2 Temporal Pattern Implementation

```python
def createTemporalPattern(spatial_dimensions, temporal_dimension, pattern_type='sine', frequency=0.1, phase=0):
    """
    Create a bitfield with a temporal pattern.
    
    Parameters:
    spatial_dimensions (tuple): Spatial dimensions (x_dim, y_dim, z_dim)
    temporal_dimension (int): Number of time steps
    pattern_type (str): Type of pattern ('sine', 'square', 'sawtooth', 'pulse')
    frequency (float): Pattern frequency (cycles per time step)
    phase (float): Initial phase (in radians)
    
    Returns:
    BitField4D: 4D bitfield with the temporal pattern
    """
    x_dim, y_dim, z_dim = spatial_dimensions
    t_dim = temporal_dimension
    
    # Create 4D bitfield
    result_bitfield = BitField4D(x_dim, y_dim, z_dim, t_dim)
    
    # Generate temporal pattern
    time_steps = np.arange(t_dim)
    
    if pattern_type == 'sine':
        # Sine wave pattern
        pattern = 0.5 + 0.5 * np.sin(2 * np.pi * frequency * time_steps + phase)
    elif pattern_type == 'square':
        # Square wave pattern
        pattern = 0.5 + 0.5 * np.sign(np.sin(2 * np.pi * frequency * time_steps + phase))
    elif pattern_type == 'sawtooth':
        # Sawtooth wave pattern
        pattern = np.mod(frequency * time_steps + phase / (2 * np.pi), 1.0)
    elif pattern_type == 'pulse':
        # Pulse pattern (periodic impulses)
        pattern = np.zeros(t_dim)
        pulse_period = int(1.0 / frequency)
        pulse_indices = np.arange(0, t_dim, pulse_period)
        pattern[pulse_indices] = 1.0
    else:
        raise ValueError(f"Unsupported pattern type: {pattern_type}")
    
    # Apply pattern to bitfield
    for t in range(t_dim):
        # Threshold pattern value to get bit value
        bit_value = 1 if pattern[t] >= 0.5 else 0
        
        # Set all spatial positions to the same temporal pattern
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    result_bitfield.setBit(x, y, z, t, bit_value)
                    
                    # Store actual pattern value as property
                    result_bitfield.setProperty(x, y, z, t, 'amplitude', float(pattern[t]))
    
    return result_bitfield
```

## 4. Neural Network Integration Implementation

### 4.1 Neural Layer Implementation

```python
def createNeuralNetwork(input_dimensions, hidden_dimensions, output_dimensions):
    """
    Create a neural network for processing BitMatrix data.
    
    Parameters:
    input_dimensions (tuple): Dimensions of the input bitfield
    hidden_dimensions (list): List of dimensions for hidden layers
    output_dimensions (tuple): Dimensions of the output bitfield
    
    Returns:
    dict: Neural network object with layers and parameters
    """
    # Calculate total sizes
    def calc_total_size(dimensions):
        total = 1
        for dim in dimensions:
            total *= dim
        return total
    
    input_size = calc_total_size(input_dimensions)
    output_size = calc_total_size(output_dimensions)
    
    # Create network structure
    network = {
        'input_dimensions': input_dimensions,
        'hidden_dimensions': hidden_dimensions,
        'output_dimensions': output_dimensions,
        'layers': []
    }
    
    # Create input layer
    current_input_size = input_size
    
    # Create hidden layers
    for i, hidden_size in enumerate(hidden_dimensions):
        # Create layer
        layer = {
            'weights': np.random.randn(hidden_size, current_input_size) * 0.1,
            'biases': np.random.randn(hidden_size) * 0.1,
            'activation': 'relu' if i < len(hidden_dimensions) - 1 else 'sigmoid'
        }
        
        network['layers'].append(layer)
        current_input_size = hidden_size
    
    # Create output layer
    output_layer = {
        'weights': np.random.randn(output_size, current_input_size) * 0.1,
        'biases': np.random.randn(output_size) * 0.1,
        'activation': 'sigmoid'
    }
    
    network['layers'].append(output_layer)
    
    return network

def applyNeuralNetwork(input_bitfield, network):
    """
    Apply a neural network to process a bitfield.
    
    Parameters:
    input_bitfield (BitFieldND): Input bitfield to process
    network (dict): Neural network object
    
    Returns:
    BitFieldND: Output bitfield after neural processing
    """
    # Validate input dimensions
    input_dimensions = input_bitfield.getDimensions()
    if input_dimensions != network['input_dimensions']:
        raise ValueError(f"Input bitfield dimensions {input_dimensions} do not match network input dimensions {network['input_dimensions']}")
    
    # Flatten input bitfield to 1D array
    input_array = []
    
    if len(input_dimensions) == 3:  # 3D input
        x_dim, y_dim, z_dim = input_dimensions
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    input_array.append(input_bitfield.getBit(x, y, z))
    
    elif len(input_dimensions) == 4:  # 4D input
        x_dim, y_dim, z_dim, t_dim = input_dimensions
        for t in range(t_dim):
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        input_array.append(input_bitfield.getBit(x, y, z, t))
    
    # Convert to numpy array
    input_array = np.array(input_array)
    
    # Forward pass through the network
    current_activation = input_array
    
    for layer in network['layers']:
        # Apply weights and biases
        z = np.dot(layer['weights'], current_activation) + layer['biases']
        
        # Apply activation function
        if layer['activation'] == 'sigmoid':
            current_activation = 1 / (1 + np.exp(-z))
        elif layer['activation'] == 'relu':
            current_activation = np.maximum(0, z)
        elif layer['activation'] == 'tanh':
            current_activation = np.tanh(z)
        else:
            raise ValueError(f"Unsupported activation function: {layer['activation']}")
    
    # Output activation is now in current_activation
    output_array = current_activation
    
    # Create output bitfield
    output_dimensions = network['output_dimensions']
    
    if len(output_dimensions) == 3:  # 3D output
        x_dim, y_dim, z_dim = output_dimensions
        output_bitfield = BitField3D(x_dim, y_dim, z_dim)
        
        # Fill output bitfield
        index = 0
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    # Threshold at 0.5 for binary output
                    bit_value = 1 if output_array[index] >= 0.5 else 0
                    output_bitfield.setBit(x, y, z, bit_value)
                    
                    # Store actual activation value as property
                    output_bitfield.setProperty(x, y, z, 'activation', float(output_array[index]))
                    index += 1
    
    elif len(output_dimensions) == 4:  # 4D output
        x_dim, y_dim, z_dim, t_dim = output_dimensions
        output_bitfield = BitField4D(x_dim, y_dim, z_dim, t_dim)
        
        # Fill output bitfield
        index = 0
        for t in range(t_dim):
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        # Threshold at 0.5 for binary output
                        bit_value = 1 if output_array[index] >= 0.5 else 0
                        output_bitfield.setBit(x, y, z, t, bit_value)
                        
                        # Store actual activation value as property
                        output_bitfield.setProperty(x, y, z, t, 'activation', float(output_array[index]))
                        index += 1
    
    return output_bitfield
```

## 5. Quantum-Inspired Implementation

### 5.1 Quantum Search Implementation

```python
def quantumSearch(bitfield, target_pattern, num_iterations=None):
    """
    Implement a quantum-inspired search algorithm to find a target pattern.
    
    Parameters:
    bitfield (BitFieldND): Bitfield to search within
    target_pattern (BitFieldND): Pattern to search for
    num_iterations (int): Number of iterations (if None, uses optimal value)
    
    Returns:
    list: List of positions where the pattern was found
    """
    bitfield_dimensions = bitfield.getDimensions()
    pattern_dimensions = target_pattern.getDimensions()
    
    # Validate dimensionality match
    if len(bitfield_dimensions) != len(pattern_dimensions):
        raise ValueError("Bitfield and pattern must have the same dimensionality")
    
    # Check if pattern fits within bitfield
    for i in range(len(bitfield_dimensions)):
        if pattern_dimensions[i] > bitfield_dimensions[i]:
            raise ValueError(f"Pattern dimension {i} exceeds bitfield dimension")
    
    # Find all possible positions where the pattern could fit
    possible_positions = []
    
    if len(bitfield_dimensions) == 3:
        x_dim, y_dim, z_dim = bitfield_dimensions
        x_pat, y_pat, z_pat = pattern_dimensions
        
        for z_start in range(z_dim - z_pat + 1):
            for y_start in range(y_dim - y_pat + 1):
                for x_start in range(x_dim - x_pat + 1):
                    possible_positions.append((x_start, y_start, z_start))
    
    elif len(bitfield_dimensions) == 4:
        x_dim, y_dim, z_dim, t_dim = bitfield_dimensions
        x_pat, y_pat, z_pat, t_pat = pattern_dimensions
        
        for t_start in range(t_dim - t_pat + 1):
            for z_start in range(z_dim - z_pat + 1):
                for y_start in range(y_dim - y_pat + 1):
                    for x_start in range(x_dim - x_pat + 1):
                        possible_positions.append((x_start, y_start, z_start, t_start))
    
    # Calculate optimal number of iterations if not specified
    # In Grover's algorithm, optimal is approximately π/4 * sqrt(N)
    if num_iterations is None:
        num_iterations = int(np.pi / 4 * np.sqrt(len(possible_positions)))
    
    # Initialize uniform superposition
    amplitudes = np.ones(len(possible_positions)) / np.sqrt(len(possible_positions))
    
    # Define oracle function to mark matching positions
    def oracle(position):
        """Return True if pattern matches at the given position."""
        if len(bitfield_dimensions) == 3:
            x_start, y_start, z_start = position
            x_pat, y_pat, z_pat = pattern_dimensions
            
            # Check if pattern matches at this position
            for z in range(z_pat):
                for y in range(y_pat):
                    for x in range(x_pat):
                        if bitfield.getBit(x_start + x, y_start + y, z_start + z) != target_pattern.getBit(x, y, z):
                            return False
            
            return True
        
        elif len(bitfield_dimensions) == 4:
            x_start, y_start, z_start, t_start = position
            x_pat, y_pat, z_pat, t_pat = pattern_dimensions
            
            # Check if pattern matches at this position
            for t in range(t_pat):
                for z in range(z_pat):
                    for y in range(y_pat):
                        for x in range(x_pat):
                            if bitfield.getBit(x_start + x, y_start + y, z_start + z, t_start + t) != target_pattern.getBit(x, y, z, t):
                                return False
            
            return True
    
    # Find matching positions
    matching_positions = [i for i, pos in enumerate(possible_positions) if oracle(pos)]
    
    # If no matches, return empty list
    if not matching_positions:
        return []
    
    # Simulate Grover's algorithm iterations
    for _ in range(num_iterations):
        # Oracle: Flip the sign of matching positions
        for i in matching_positions:
            amplitudes[i] = -amplitudes[i]
        
        # Diffusion operator: Reflect about the mean
        mean_amplitude = np.mean(amplitudes)
        amplitudes = 2 * mean_amplitude - amplitudes
    
    # Calculate probabilities
    probabilities = np.abs(amplitudes)**2
    
    # Sort positions by probability (highest first)
    sorted_indices = np.argsort(-probabilities)
    
    # Return positions with highest probability
    result_positions = [possible_positions[i] for i in sorted_indices[:len(matching_positions)]]
    
    return result_positions
```

### 5.2 Quantum Fourier Transform Implementation

```python
def quantumFourierTransform(bitfield):
    """
    Implement a quantum-inspired Fourier transform.
    
    Parameters:
    bitfield (BitFieldND): Bitfield to transform
    
    Returns:
    BitFieldND: Transformed bitfield
    """
    dimensions = bitfield.getDimensions()
    
    # Extract bit values into numpy array
    if len(dimensions) == 3:  # 3D bitfield
        x_dim, y_dim, z_dim = dimensions
        data_array = np.zeros(dimensions, dtype=complex)
        
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    # Get bit value and convert to complex number
                    bit_value = bitfield.getBit(x, y, z)
                    data_array[x, y, z] = complex(bit_value)
    
    elif len(dimensions) == 4:  # 4D bitfield
        x_dim, y_dim, z_dim, t_dim = dimensions
        data_array = np.zeros(dimensions, dtype=complex)
        
        for t in range(t_dim):
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        # Get bit value and convert to complex number
                        bit_value = bitfield.getBit(x, y, z, t)
                        data_array[x, y, z, t] = complex(bit_value)
    
    # Apply Fast Fourier Transform
    fft_result = np.fft.fftn(data_array)
    
    # Normalize
    fft_result = fft_result / np.sqrt(np.prod(dimensions))
    
    # Create result bitfield
    if len(dimensions) == 3:
        result_bitfield = BitField3D(*dimensions)
        
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    # Calculate magnitude (absolute value)
                    magnitude = np.abs(fft_result[x, y, z])
                    phase = np.angle(fft_result[x, y, z])
                    
                    # Set bit based on threshold
                    bit_value = 1 if magnitude > 0.5 else 0
                    result_bitfield.setBit(x, y, z, bit_value)
                    
                    # Store complex value as properties
                    result_bitfield.setProperty(x, y, z, 'magnitude', float(magnitude))
                    result_bitfield.setProperty(x, y, z, 'phase', float(phase))
    
    elif len(dimensions) == 4:
        result_bitfield = BitField4D(*dimensions)
        
        for t in range(t_dim):
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        # Calculate magnitude (absolute value)
                        magnitude = np.abs(fft_result[x, y, z, t])
                        phase = np.angle(fft_result[x, y, z, t])
                        
                        # Set bit based on threshold
                        bit_value = 1 if magnitude > 0.5 else 0
                        result_bitfield.setBit(x, y, z, t, bit_value)
                        
                        # Store complex value as properties
                        result_bitfield.setProperty(x, y, z, t, 'magnitude', float(magnitude))
                        result_bitfield.setProperty(x, y, z, t, 'phase', float(phase))
    
    return result_bitfield
```

## 6. Data Compression Implementation

### 6.1 LZW Compression Implementation

```python
def compressLZW(bitfield):
    """
    Compress a bitfield using LZW compression.
    
    Parameters:
    bitfield (BitFieldND): Bitfield to compress
    
    Returns:
    tuple: (compressed_data, dictionary)
    """
    dimensions = bitfield.getDimensions()
    
    # Flatten bitfield to 1D sequence
    bit_sequence = []
    
    if len(dimensions) == 3:
        x_dim, y_dim, z_dim = dimensions
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    bit_sequence.append(str(bitfield.getBit(x, y, z)))
    
    elif len(dimensions) == 4:
        x_dim, y_dim, z_dim, t_dim = dimensions
        for t in range(t_dim):
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        bit_sequence.append(str(bitfield.getBit(x, y, z, t)))
    
    # Convert bit sequence to string
    bit_string = ''.join(bit_sequence)
    
    # Initialize dictionary with single characters
    dictionary = {str(i): i for i in range(2)}  # 0 and 1
    next_code = 2
    
    # Initialize variables
    current_string = ""
    compressed_data = []
    
    # Compress
    for bit in bit_string:
        # Try to extend current string
        new_string = current_string + bit
        
        if new_string in dictionary:
            # If extended string exists in dictionary, continue extending
            current_string = new_string
        else:
            # Output code for current string
            compressed_data.append(dictionary[current_string])
            
            # Add new string to dictionary
            dictionary[new_string] = next_code
            next_code += 1
            
            # Reset current string
            current_string = bit
    
    # Output code for any remaining string
    if current_string:
        compressed_data.append(dictionary[current_string])
    
    return compressed_data, dictionary

def decompressLZW(compressed_data, dictionary):
    """
    Decompress LZW-compressed data.
    
    Parameters:
    compressed_data (list): Compressed data codes
    dictionary (dict): Compression dictionary
    
    Returns:
    str: Decompressed bit string
    """
    # Invert dictionary for decompression
    reverse_dict = {v: k for k, v in dictionary.items()}
    
    # Initialize variables
    decompressed_string = ""
    
    # Decompress
    for code in compressed_data:
        if code in reverse_dict:
            decompressed_string += reverse_dict[code]
        else:
            # Special case for codes not in dictionary
            # (can happen in LZW when a pattern is repeated)
            previous_string = reverse_dict[compressed_data[-1]]
            decompressed_string += previous_string + previous_string[0]
    
    return decompressed_string
```

### 6.2 Run-Length Encoding Implementation

```python
def compressRLE(bitfield):
    """
    Compress a bitfield using Run-Length Encoding.
    
    Parameters:
    bitfield (BitFieldND): Bitfield to compress
    
    Returns:
    list: List of (value, length) tuples
    """
    dimensions = bitfield.getDimensions()
    
    # Flatten bitfield to 1D sequence
    bit_sequence = []
    
    if len(dimensions) == 3:
        x_dim, y_dim, z_dim = dimensions
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    bit_sequence.append(bitfield.getBit(x, y, z))
    
    elif len(dimensions) == 4:
        x_dim, y_dim, z_dim, t_dim = dimensions
        for t in range(t_dim):
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        bit_sequence.append(bitfield.getBit(x, y, z, t))
    
    # Compress using RLE
    compressed_data = []
    current_value = bit_sequence[0]
    current_length = 1
    
    for bit in bit_sequence[1:]:
        if bit == current_value:
            # Continue current run
            current_length += 1
        else:
            # End current run
            compressed_data.append((current_value, current_length))
            
            # Start new run
            current_value = bit
            current_length = 1
    
    # Add final run
    compressed_data.append((current_value, current_length))
    
    return compressed_data

def decompressRLE(compressed_data):
    """
    Decompress RLE-compressed data.
    
    Parameters:
    compressed_data (list): List of (value, length) tuples
    
    Returns:
    list: Decompressed bit sequence
    """
    decompressed_sequence = []
    
    for value, length in compressed_data:
        decompressed_sequence.extend([value] * length)
    
    return decompressed_sequence
```

## 7. Error Correction Implementation

### 7.1 Hamming Code Implementation

```python
def encodeHamming(bitfield):
    """
    Encode a bitfield using Hamming code for error correction.
    
    Parameters:
    bitfield (BitFieldND): Bitfield to encode
    
    Returns:
    BitFieldND: Encoded bitfield with error correction
    """
    dimensions = bitfield.getDimensions()
    
    # Flatten bitfield to 1D sequence
    data_bits = []
    
    if len(dimensions) == 3:
        x_dim, y_dim, z_dim = dimensions
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    data_bits.append(bitfield.getBit(x, y, z))
    
    elif len(dimensions) == 4:
        x_dim, y_dim, z_dim, t_dim = dimensions
        for t in range(t_dim):
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        data_bits.append(bitfield.getBit(x, y, z, t))
    
    # Process data in blocks (for simplicity, we'll use Hamming(7,4) code)
    encoded_bits = []
    
    for i in range(0, len(data_bits), 4):
        # Get 4 data bits (pad with 0 if needed)
        block = data_bits[i:i+4]
        while len(block) < 4:
            block.append(0)
        
        # Calculate parity bits
        p1 = (block[0] ^ block[1] ^ block[3]) % 2
        p2 = (block[0] ^ block[2] ^ block[3]) % 2
        p3 = (block[1] ^ block[2] ^ block[3]) % 2
        
        # Create encoded block (7 bits)
        encoded_block = [p1, p2, block[0], p3, block[1], block[2], block[3]]
        encoded_bits.extend(encoded_block)
    
    # Create encoded bitfield
    # For simplicity, we'll create a 1D bitfield
    encoded_bitfield = BitField3D(len(encoded_bits), 1, 1)
    
    for i, bit in enumerate(encoded_bits):
        encoded_bitfield.setBit(i, 0, 0, bit)
    
    return encoded_bitfield

def decodeHamming(encoded_bitfield):
    """
    Decode a Hamming-encoded bitfield, correcting single-bit errors.
    
    Parameters:
    encoded_bitfield (BitFieldND): Encoded bitfield
    
    Returns:
    BitFieldND: Decoded bitfield with errors corrected
    """
    # Extract encoded bits
    dimensions = encoded_bitfield.getDimensions()
    encoded_bits = []
    
    if dimensions[0] > 1 and dimensions[1] == 1 and dimensions[2] == 1:
        # 1D encoded bitfield
        for i in range(dimensions[0]):
            encoded_bits.append(encoded_bitfield.getBit(i, 0, 0))
    else:
        # Flatten general bitfield
        if len(dimensions) == 3:
            x_dim, y_dim, z_dim = dimensions
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        encoded_bits.append(encoded_bitfield.getBit(x, y, z))
        
        elif len(dimensions) == 4:
            x_dim, y_dim, z_dim, t_dim = dimensions
            for t in range(t_dim):
                for z in range(z_dim):
                    for y in range(y_dim):
                        for x in range(x_dim):
                            encoded_bits.append(encoded_bitfield.getBit(x, y, z, t))
    
    # Process in blocks of 7 bits (Hamming(7,4) code)
    decoded_bits = []
    
    for i in range(0, len(encoded_bits), 7):
        # Get 7 encoded bits (pad with 0 if needed)
        block = encoded_bits[i:i+7]
        while len(block) < 7:
            block.append(0)
        
        # Extract parity and data bits
        p1, p2, d1, p3, d2, d3, d4 = block
        
        # Check parity bits
        check1 = (p1 ^ d1 ^ d2 ^ d4) % 2
        check2 = (p2 ^ d1 ^ d3 ^ d4) % 2
        check3 = (p3 ^ d2 ^ d3 ^ d4) % 2
        
        # Calculate error position
        error_pos = check1 + 2*check2 + 4*check3
        
        # Correct error if detected
        if error_pos > 0:
            if error_pos == 3:
                d1 = 1 - d1
            elif error_pos == 5:
                d2 = 1 - d2
            elif error_pos == 6:
                d3 = 1 - d3
            elif error_pos == 7:
                d4 = 1 - d4
        
        # Add corrected data bits to result
        decoded_bits.extend([d1, d2, d3, d4])
    
    # Create decoded bitfield
    # For simplicity, we'll create a 1D bitfield
    decoded_bitfield = BitField3D(len(decoded_bits), 1, 1)
    
    for i, bit in enumerate(decoded_bits):
        decoded_bitfield.setBit(i, 0, 0, bit)
    
    return decoded_bitfield
```

## 8. 5D KTA Implementation

### 8.1 KTA Dimensional Transform Implementation

```python
def ktaDimensionShift(bitfield, source_dim, target_dim):
    """
    Implement a KTA dimension shift operation.
    
    Parameters:
    bitfield (BitFieldND): Input bitfield
    source_dim (int): Source dimension index (0=x, 1=y, 2=z, 3=t)
    target_dim (int): Target dimension index (0=x, 1=y, 2=z, 3=t)
    
    Returns:
    BitFieldND: Transformed bitfield
    """
    dimensions = bitfield.getDimensions()
    
    if len(dimensions) < max(source_dim, target_dim) + 1:
        raise ValueError("Bitfield dimensionality too low for specified dimensions")
    
    # Create new dimensions with source and target dimensions swapped
    new_dimensions = list(dimensions)
    new_dimensions[source_dim], new_dimensions[target_dim] = new_dimensions[target_dim], new_dimensions[source_dim]
    
    # Create result bitfield
    if len(dimensions) == 3:
        result_bitfield = BitField3D(*new_dimensions)
    elif len(dimensions) == 4:
        result_bitfield = BitField4D(*new_dimensions)
    else:
        raise ValueError("Unsupported bitfield dimensionality")
    
    # Copy bits with dimensions swapped
    if len(dimensions) == 3:
        x_dim, y_dim, z_dim = dimensions
        
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    # Create coordinate array
                    coords = [x, y, z]
                    
                    # Swap source and target dimensions
                    coords[source_dim], coords[target_dim] = coords[target_dim], coords[source_dim]
                    
                    # Get bit value from original position
                    bit_value = bitfield.getBit(x, y, z)
                    
                    # Set bit value at transformed position
                    result_bitfield.setBit(*coords, bit_value)
                    
                    # Copy properties
                    for prop_name in bitfield.getPropertyNames(x, y, z):
                        prop_value = bitfield.getProperty(x, y, z, prop_name)
                        result_bitfield.setProperty(*coords, prop_name, prop_value)
    
    elif len(dimensions) == 4:
        x_dim, y_dim, z_dim, t_dim = dimensions
        
        for t in range(t_dim):
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        # Create coordinate array
                        coords = [x, y, z, t]
                        
                        # Swap source and target dimensions
                        coords[source_dim], coords[target_dim] = coords[target_dim], coords[source_dim]
                        
                        # Get bit value from original position
                        bit_value = bitfield.getBit(x, y, z, t)
                        
                        # Set bit value at transformed position
                        result_bitfield.setBit(*coords, bit_value)
                        
                        # Copy properties
                        for prop_name in bitfield.getPropertyNames(x, y, z, t):
                            prop_value = bitfield.getProperty(x, y, z, t, prop_name)
                            result_bitfield.setProperty(*coords, prop_name, prop_value)
    
    return result_bitfield
```

### 8.2 KTA Kinetic Operation Implementation

```python
def ktaKineticTransform(bitfield, energy_function):
    """
    Implement a KTA kinetic transformation.
    
    Parameters:
    bitfield (BitFieldND): Input bitfield
    energy_function (function): Function that calculates kinetic energy for each position
    
    Returns:
    BitFieldND: Transformed bitfield
    """
    dimensions = bitfield.getDimensions()
    
    # Create result bitfield
    if len(dimensions) == 3:
        result_bitfield = BitField3D(*dimensions)
    elif len(dimensions) == 4:
        result_bitfield = BitField4D(*dimensions)
    else:
        raise ValueError("Unsupported bitfield dimensionality")
    
    # Apply kinetic transformation
    if len(dimensions) == 3:
        x_dim, y_dim, z_dim = dimensions
        
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    # Get original bit value
                    bit_value = bitfield.getBit(x, y, z)
                    
                    # Calculate kinetic energy
                    energy = energy_function(x, y, z)
                    
                    # Apply transformation based on energy
                    # For example, flip bit if energy exceeds threshold
                    if energy > 0.5:
                        transformed_value = 1 - bit_value
                    else:
                        transformed_value = bit_value
                    
                    # Set transformed bit
                    result_bitfield.setBit(x, y, z, transformed_value)
                    
                    # Store energy as property
                    result_bitfield.setProperty(x, y, z, 'kinetic_energy', float(energy))
    
    elif len(dimensions) == 4:
        x_dim, y_dim, z_dim, t_dim = dimensions
        
        for t in range(t_dim):
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        # Get original bit value
                        bit_value = bitfield.getBit(x, y, z, t)
                        
                        # Calculate kinetic energy
                        energy = energy_function(x, y, z, t)
                        
                        # Apply transformation based on energy
                        # For example, flip bit if energy exceeds threshold
                        if energy > 0.5:
                            transformed_value = 1 - bit_value
                        else:
                            transformed_value = bit_value
                        
                        # Set transformed bit
                        result_bitfield.setBit(x, y, z, t, transformed_value)
                        
                        # Store energy as property
                        result_bitfield.setProperty(x, y, z, t, 'kinetic_energy', float(energy))
    
    return result_bitfield
```

## 9. Application Examples

### 9.1 Enhanced Data Compression Example

```python
def enhancedCompression(bitfield):
    """
    Implement enhanced data compression using BitMatrix techniques.
    
    Parameters:
    bitfield (BitFieldND): Input bitfield to compress
    
    Returns:
    tuple: (compressed_data, metadata)
    """
    # Step 1: Apply KTA transformation to increase compressibility
    def energy_function(*coords):
        # Simple energy function based on coordinate sum
        return sum(coords) / (len(coords) * 10)
    
    transformed_bitfield = ktaKineticTransform(bitfield, energy_function)
    
    # Step 2: Apply quantum-inspired Fourier transform to identify patterns
    fourier_bitfield = quantumFourierTransform(transformed_bitfield)
    
    # Step 3: Extract high-magnitude frequency components
    dimensions = fourier_bitfield.getDimensions()
    high_magnitude_components = []
    
    if len(dimensions) == 3:
        x_dim, y_dim, z_dim = dimensions
        for z in range(z_dim):
            for y in range(y_dim):
                for x in range(x_dim):
                    magnitude = fourier_bitfield.getProperty(x, y, z, 'magnitude')
                    if magnitude > 0.1:  # Threshold
                        high_magnitude_components.append((x, y, z, magnitude,
                                                        fourier_bitfield.getProperty(x, y, z, 'phase')))
    
    elif len(dimensions) == 4:
        x_dim, y_dim, z_dim, t_dim = dimensions
        for t in range(t_dim):
            for z in range(z_dim):
                for y in range(y_dim):
                    for x in range(x_dim):
                        magnitude = fourier_bitfield.getProperty(x, y, z, t, 'magnitude')
                        if magnitude > 0.1:  # Threshold
                            high_magnitude_components.append((x, y, z, t, magnitude,
                                                            fourier_bitfield.getProperty(x, y, z, t, 'phase')))
    
    # Step 4: Apply run-length encoding to the transformed bitfield
    rle_data = compressRLE(transformed_bitfield)
    
    # Step 5: Apply LZW compression to the RLE data
    lzw_data, dictionary = compressLZW(str(rle_data))
    
    # Create metadata for decompression
    metadata = {
        'dimensions': dimensions,
        'high_magnitude_components': high_magnitude_components,
        'dictionary': dictionary
    }
    
    return lzw_data, metadata

def enhancedDecompression(compressed_data, metadata):
    """
    Decompress data using BitMatrix enhanced decompression.
    
    Parameters:
    compressed_data (list): Compressed data
    metadata (dict): Compression metadata
    
    Returns:
    BitFieldND: Decompressed bitfield
    """
    # Extract metadata
    dimensions = metadata['dimensions']
    high_magnitude_components = metadata['high_magnitude_components']
    dictionary = metadata['dictionary']
    
    # Step 1: Apply LZW decompression
    decompressed_lzw = decompressLZW(compressed_data, dictionary)
    
    # Step 2: Parse RLE data and apply RLE decompression
    # (This is a simplified version, actual implementation would need to parse the string representation)
    rle_data = eval(decompressed_lzw)  # Warning: eval is used for simplicity, not recommended in production
    decompressed_rle = decompressRLE(rle_data)
    
    # Step 3: Reconstruct bitfield from decompressed data
    if len(dimensions) == 3:
        reconstructed_bitfield = BitField3D(*dimensions)
        
        # Fill with decompressed data
        index = 0
        for z in range(dimensions[2]):
            for y in range(dimensions[1]):
                for x in range(dimensions[0]):
                    if index < len(decompressed_rle):
                        reconstructed_bitfield.setBit(x, y, z, decompressed_rle[index])
                        index += 1
    
    elif len(dimensions) == 4:
        reconstructed_bitfield = BitField4D(*dimensions)
        
        # Fill with decompressed data
        index = 0
        for t in range(dimensions[3]):
            for z in range(dimensions[2]):
                for y in range(dimensions[1]):
                    for x in range(dimensions[0]):
                        if index < len(decompressed_rle):
                            reconstructed_bitfield.setBit(x, y, z, t, decompressed_rle[index])
                            index += 1
    
    # Step 4: Apply inverse KTA transformation
    def inverse_energy_function(*coords):
        # Inverse of the energy function used in compression
        return sum(coords) / (len(coords) * 10)
    
    decompressed_bitfield = ktaKineticTransform(reconstructed_bitfield, inverse_energy_function)
    
    return decompressed_bitfield
```

### 9.2 Neural Network Pattern Recognition Example

```python
def neuralPatternRecognition(input_bitfield, pattern_library):
    """
    Implement neural pattern recognition using BitMatrix techniques.
    
    Parameters:
    input_bitfield (BitFieldND): Input bitfield to analyze
    pattern_library (dict): Library of known patterns
    
    Returns:
    dict: Recognition results
    """
    # Step 1: Extract features from input bitfield
    feature_size = (2, 2, 2)
    features = extractFeatures(input_bitfield, feature_size)
    
    # Step 2: Create neural network for pattern recognition
    input_dimensions = input_bitfield.getDimensions()
    hidden_dimensions = [64, 32]
    output_dimensions = (len(pattern_library),)
    
    network = createNeuralNetwork(input_dimensions, hidden_dimensions, output_dimensions)
    
    # Step 3: Train network with pattern library
    # (In a real implementation, this would be done beforehand)
    # Here we'll simulate a pre-trained network
    
    # Step 4: Apply neural network to input
    output_bitfield = applyNeuralNetwork(input_bitfield, network)
    
    # Step 5: Interpret results
    results = {}
    
    # Get activation values for each pattern
    if len(output_dimensions) == 1:
        for i in range(output_dimensions[0]):
            pattern_name = list(pattern_library.keys())[i]
            activation = output_bitfield.getProperty(i, 0, 0, 'activation')
            results[pattern_name] = activation
    
    # Sort patterns by activation (highest first)
    sorted_results = sorted(results.items(), key=lambda x: x[1], reverse=True)
    
    # Return top matches
    return {
        'top_matches': sorted_results[:3],
        'features': len(features),
        'confidence': sorted_results[0][1] if sorted_results else 0
    }
```

### 9.3 Quantum-Inspired Computing Example

```python
def quantumInspiredAlgorithm(bitfield, iterations=10):
    """
    Implement a quantum-inspired algorithm using BitMatrix techniques.
    
    Parameters:
    bitfield (BitFieldND): Input bitfield
    iterations (int): Number of iterations
    
    Returns:
    BitFieldND: Processed bitfield
    """
    dimensions = bitfield.getDimensions()
    
    # Step 1: Create superposition of states
    states, probabilities = createSuperposition(dimensions, num_states=4)
    
    # Step 2: Apply quantum gates to each state
    processed_states = []
    
    for state in states:
        # Apply X gate to specific bits
        target_bits = [(0, 0, 0), (1, 1, 1)]
        processed_state = applyQuantumGate(state, 'X', target_bits)
        
        # Apply Hadamard gate to create superpositions
        target_bits = [(2, 2, 2)]
        processed_state = applyQuantumGate(processed_state, 'H', target_bits)
        
        # Apply CNOT gate for entanglement
        control_bits = [(0, 0, 0)]
        target_bits = [(1, 1, 1)]
        processed_state = applyQuantumGate(processed_state, 'CNOT', target_bits, control_bits)
        
        processed_states.append(processed_state)
    
    # Step 3: Apply quantum Fourier transform
    fourier_states = [quantumFourierTransform(state) for state in processed_states]
    
    # Step 4: Perform quantum walk
    walked_states = []
    
    for state in fourier_states:
        walked_state = performQuantumWalk(state, steps=iterations)
        walked_states.append(walked_state)
    
    # Step 5: Measure superposition to get final state
    final_state, selected_index = measureSuperposition(walked_states, probabilities)
    
    return final_state
```

These implementation examples demonstrate how the BitMatrix Spatial Computing framework can be applied to solve various computational problems using its unique multidimensional approach and quantum-inspired techniques.